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INTRODUCTION 

There has been a transition in the corn belt states from 

the holding of any-deer seasons to the need for bucks-only 

regulations—the millstone of the lake states wildlife admini

strators. This has become necessary in order to rebuild deer 

populations that suffered excessive exploitation under the 

liberal any-deer type regulation. The habitats of the corn-

belt do not provide sufficient opportunity for deer to escape 

the hunter and are thus the most vulnerable habitat when com

pared with almost any other situation in which white-tails 

live. This situation has evolved until at the present, Iowa 

and Minnesota, are the sole states in the corn belt which are 

maintaining good hunting under statewide any-deer regulations. 

Populations of white-tails declined drastically and also 

disappeared from many areas which had the limited cover charac

teristic of intensively farmed areas. This situation was the 

case in Ohio, Indiana, and Illinois in particular. The re

gression to bucks-only seasons was a necessity primarily due 

to inability to determine exploitation levels with sufficient 

confidence to use as a basis for the management of the species. 

Thus, as d result of inadequate management criteria, herds in 

the corn belt were decimated through excessive hunting pressure. 

The elusive and largely nocturnal white-tailed deer is impos

sible to count over extensive range and estimates derived in 

the several possible ways lack credibility. 
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Hunting success, which is the usual barometer of the 

sportsman, holds up fairly well until the population is badly 

depleted. If it were merely a question of the hunter finding 

a better population to hunt, which in turn was under-exploited, 

then the problem of excessive pressure would average out in 

the habitat. What has happened is that increasing numbers of 

hunters wish to hunt deer. The demand for necessarily limited 

permits and licenses forces increased authorizations, due to 

the progression of the political process, and, thus, over-

exploited populations are not permitted to recover. 

Hunting success in Iowa's more vulnerable habitats such 

as the north-central prairie habitats and in the east-central 

river breaks areas has declined either periodically or progres

sively due to excessive exploitation, primarily hunting. The 

lowered success rates are not altogether unacceptable and this 

situation has masked the significant changes in deer population 

levels which actually have occurred. Increased numbers of 

hunters and increasingly efficient hunting methods have created 

circumstances where some areas with pre-season huntable popula

tions have virtually none following a season. Future popula

tions depend on emigration. 

Additional criteria are needed for determining exploita

tion levels for corn belt deer. Hunting success, population 

estimates, and various indices to population levels have proven 

treacherous criteria for management of white-tails in the corn 

belt. 
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Definition of the Problem 

Age data taken from a sample of the legal harvest re

presents the primary biological data routinely collected by 

nearly all of the corn-belt states including Iowa. These data 

can be assembled by age-class to represent the age distribu

tion of the harvest at a minimum, and depending upon the degree 

of bias, they may represent a satisfactory estimate of the 

age structure of the population. If better criteria are to be 

developed concerning exploitation they most likely will come 

from such data and other life history features of the species. 

The problem 

Are there pertinent and valid relationships existing 

between the components of age distributions or other life 

history features of deer in Iowa that can provide reliable 

estimates of exploitation level or rates of population change? 
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HISTORICAL REVIEW 

The mathematical basis for relating the age structure of a 

population to life history features was established by Lotka 

(1907a) in his first paper on population analysis. In the same 

year (19 07) , Sundbarg reached the conclusion that a human pop

ulation reveals its condition (tendency to grow or decline) 

through its age structure. Cole (1957) and Bodenheimer (1938) 

believe that these important conclusions have not been suffi

ciently noted by ecologists. When the mortality factors 

affecting a population are altered, either through natural 

environmental changes or through human exploitation or attempts 

at control, there will be a resulting change in the age struc

ture of the population, and this may be observable, says Cole 

(1957) , even before changes in population size or in birth 

rates provide evidence of the consequences of the changed 

mortality factors. 

Thus, observations of the changes in the age structure of 

populations may provide valuable evidence of over-exploitation. 

LeCren and Holdgate (1962), in their introduction to a 

symposium on the exploitation of natural animal populations, 

point to the value of data from exploited populations as 

opposed to stable populations in the study of regulatory mech

anisms in natural animal populations. They believe these kinds 

of data constituted experiments in population dynamics. 
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The neglect of the analytical methods by biologists is 

attributed by Cole (1954, 1957), to the tendency of the 

writers in the field of population theory to concentrate on 

the analysis of human populations and in part to skepticism 

about the mathematical methods of analysis. He believes that 

it will eventually come to the attention of field biologists 

generally that a great deal of information about the status of 

a population can be obtained from a study of its age distribu

tion, and that changes in this distribution may be preludes to 

more dramatic changes in population size. 

Existing Theory 

Theory of stable age-distributions 

Population analysis for all species is of necessity tied 

to the theory of "stable age-distributions" proposed by Lotka 

in 1907a. Additional contributions to the theory were presented 

in succeeding publications throughout his career: 1911, 1922, 

1925, 1936, 1939, 1949. 

He was able to show mathematically that the distribution 

of ages in a population in which the birth-rates and death-

rates for each age group remain constant and which is increasing 

in unlimited space would approach a certain distribution which 

he called "the stable age-distribution" because it would not 

vary with time. Lotka also proved that as a population 

approached this stable state its rate of increase also ap

proached a certain constant which he called "the intrinsic 
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rate of increase". 

The rationale for the development of stability in age 

structures of populations of animals is best presented by Cole 

(1957): "It is obvious that if a population is always growing, 

as are the populations in the models used for determining po

tential population growth, then each age and sex class must 

ultimately come to grow at the same rate as every other class. 

If this were not the case, the disproportion between any two 

classes would come to exceed all bounds. The fastest growing 

class would continue indefinitely to make up a larger and 

larger proportion of the total population. It is thus intui

tively recognizable that with fixed life history features there 

must ultimately be a fixed sex ratio and a stable age-distribu

tion." 

Allee, et (1949) , interpreting the works of Sharpe 

and Lotka (1911), state that when life history features remain 

constant from generation to generation the population will 

ultimately settle down to a "fixed" or "stable" age distribu

tion and will exhibit a fixed birth rate. If stability of a 

population could be shown, one would expect constant or fixed 

age specific mortality rates, age specific birth rates and a 

fixed population birth and death rate, according to this theory. 

The central characteristic of the theory is that the 

actual age-distribution varies about the stable type of age-

distribution, and tends to return to the stable type if through 



www.manaraa.com

7 

any agency disturbed therefrom. Sharpe and Lotka (1911) showed 

that it will become re-established after temporary displace

ments. Coale (1968) illustrates the operation of the theory 

in population analysis of the Swedish people whose experiments 

in socialism have had population effects, and also in analysis 

of German populations which were affected by pronouncements of 

Adolph Hitler and resulting implementation by "der SS". 

Previous applications 

Lotka's theory has been fully accepted and utilized 

together with its related mathematical methods by human demo

graphers and their colleagues in actuarial science. Its 

application in the study of other natural animal populations 

has been quite restricted. Andrewartha and Birch (1954) and 

Eberhardt (1960) have held that the requisite assumptions of 

constant age-schedules of fertility and survival are so rarely 

met in free-living natural populations that its application 

thereto is inappropriate. Cole (1954 and 1957) disagrees and 

is its foremost current advocate for reasons already noted. 

Eberhardt (1960) considered the theory in connection with the 

analysis of Michigan white-tailed deer populations but applied 

the mathematical methods to hypothetical populations rather 

than directly to real age-distributions. 

Population studies that have employed the related tech

niques have dealt with species of economic importance, 
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primarily insects (Evans and Smith, 1952; Howe, 1953; Leslie 

and Park, 1949; Birch, 1948; Leslie and Ranson, 1940). 

Mathematical Methods of Analysis 

Lotka's intrinsic rate of natural increase 

Lotka's pioneer work establishing theoretical relation

ships also provided the methods for interpreting the relation

ships between life history features and their population 

consequences. 

Leslie and Ranson (19 40) , in dealing with laboratory 

populations of a vole, Microtus agrestis, used the following 

definition of the "intrinsic rate of natural increase": "It 

is the relative rate at which a population would ultimately 

increase or decrease, if the observed mortality and fertility 

were to remain constant in a stable and unlimited environment." 

In one sense, they considered it an abstract quantity, since 

both mortality and fertility would be expected to vary in 

response to changes in the environment and the increasing 

density of any naturally growing population. They believed it 

to be by far the most convenient measure to employ and to be 

implicit in any system of rates of death and reproduction 

which is appropriate, for a given population, to the conditions 

existing at the time of observation. 

Chapman (1928) has presented a similar concept con

cerning rate of increase which he called biotic potential. 
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This concept considers the potential rate of increase as a 

fixed species characteristic governed by life history features 

and suggests that it is seldom realized due to environmental 

conditions. 

Cole (1957) believed that the concept of the intrinsic 

rate of increase has a wider utility, if, instead of confining 

it to the measurement of a species characteristic as in the 

concept of biotic potential of Chapman, it is extended to 

individual populations. When thiè is done, the exponential 

rate becomes a statistic, r, and its value depends upon the 

prevailing age-schedule of fertility and survival. In this 

way, r becomes a measure of the difference between two popula

tions of the same species growing under different conditions. 

Estimating "r" 

Precise calculation Lotka has provided three models 

in support of his theory and for the precise calculation of 

"r". Solution of the equations depends on numerical integra

tion or on a choice of one of several methods of approximation 

(Lotka, 1939). In many practical applications dealing with 

natural and experimental populations some approximation to the 

value of "r" may be all that can be justified by the accuracy 

of the data. 

Approximate calculation Andrewartha and Birch (1954) 

have summarized a convenient method of approximation of "r". 

The method of "mean length of a generation" is also used by 
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Leslie and Ranson (1940) and they provide a sample calculation 

also. 

Ratio of population change 

The exponential rate of increase or decrease, "r", is a 

logarithm. For small values of "r" it is sufficiently accurate 

to be used as a ratio of population change. For larger values 

of "r", the antilog is referred to as Lambda and represents 

the ratio of population change in successive time intervals 

(Cole, 1957). 

Life table analysis 

Quick (1958) proposed that wildlife biologists place an 

emphasis on the development of a system of analysis of wildlife 

populations which did not deal entirely with indices to that 

population such as changes in numbers of road-kills, or deer 

pellet counts, but that dealt with the population itself. He 

called this approach "population analysis", and suggested that 

it employ the techniques of human demography to understand the 

dynamics of wildlife populations. The one technique he 

referred to was "life-table analysis". 

The potential for the life-table in animal population 

analysis was first fully described by Deevey (1947) and illu

strated by Murie (1944) when he employed the life table to 

summarize age distribution data for the Dall Mountain Sheep. 

In the bio-medical field, this actuarial technique is best 
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described by Pearl (1940) for use with human populations. The 

method has been described by Henderson (1915), and Glover 

(1921) in the earliest analysis of human census data. Pearl 

and Parker (1924) published the first complete life table for 

an organism other than man, and Pearl and Miner (19 35) have 

reviewed the early work up to that time. 

The use of the life table method had not been extensive for 

wildlife populations. Quick (1958) applied it to the analysis 

of data from an extermination of a herd of Danish Roe Deer. 

This analysis provided invaluable insight to the effects of 

exploitation at different levels and thus contributed to the 

understanding of kill curves in common use with natural popula

tions. This work was significant and became an important part 

of the techniques manual of the Wildlife Society in 1957. 

Life tables have been constructed for a variety of game 

populations. Banfield (1955) prepared one for caribou. Nixon 

(1968) and Larson (1967d) used life table analysis for white-

tailed deer populations; Tabor and Dasman (1957) used it for 

black-tailed deer populations. 

Limitations There is near universal disagreement as 

to the assumptions and prerequisites to the use of life table 

analysis. Quick, In Mosby (1963) presents three kinds of life 

tables; based on a cohort, time-specific populations, and 

composite populations. He does not clarify the conditions 

requisite for the use of each type. Original and early 
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writings on this subject suggest results are applicable under 

the conditions present when the data were collected. This 

permitted wide interpretation but little application. The 

method originated about the same time as the theory of stable 

age-distributions by Lotka (1907a) and the same assumptions 

apparently are required. These assumptions concerning mortal

ity and fertility rates seem to be insurmountable to most 

workers and thus restrict greater applications of a useful 

technique. Deevey (1947) has made a useful distinction be

tween applications of the method. He has applied the term 

"ecological life tables" to those prepared from natural popu

lations and "experimental life tables" to those from laboratory 

populations. 

Management Tools in Use 

State game departments usually have legal responsibility 

for maintaining populations of game. This is true in Iowa 

where the "biological balance law" requires the maintenance of 

game populations. There is an implication that it would be 

illegal to so manage or exploit these populations so as to 

bring about a decline in their breeding populations. Wildlife 

biologists are charged by these departments with the task of 

determining safe exploitation levels as can be determined from 

available biological data and to recorameau appropriate hunting 

recommendations so as to comply with the law. 
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Several types of data are utilized to interpret the 

status of populations by state biologists in the corn belt. 

Personal subjective estimates are usually requested from lay 

field personnel. These prove of little value for management 

purposes but frequently are the basis of management plans 

(Larson, 1967b). 

Perhaps the typical rationale for management recommenda

tions, which require a decision as to total number of hunting 

permits to be issued and also in what area, is tied to the 

theory of "virtual populations" (Ricker, 1958). The record of 

numbers of hunters over the previous seasons, their success 

rates, and the total number of deer killed annually, gives an 

insight as to the status of the population. Again this is a 

subjective judgment that assesses past management. The 

rationale is this: if success rates stay the same, and the 

number of hunters were increased, the deer population must have 

been increasing. Thus, if the total kill was not dispropor

tionately larger than last year's, the population was probably 

not hurt and more permits can be issued next year. It is 

necessary to consider differences in hunting conditions in 

these judgments. 

Various indices to population levels are also used. One 

of these is the change in numbers of deer killed by traffic 

during the year. A relatively constant proportion of these 

are reportfid to state personnel and used primarily for this 
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purpose (Thompson, 1968 and Nixon, 1968). The problem is that 

changes in traffic patterns are not considered in any statis

tically significant way. 

Estimates of survival rates 

Hayne and Eberhardt (1952) have investigated the relation

ships within age distributions of deer to obtain estimates of 

survivorship. They based their work on Ricker (1948). They 

present four ways to estimate survival rates. These all 

depend on the premise that the rate of decline between age 

classes of the kill curve or the survivorship curve (Ix) would 

indicate survival rates of the population. They state that 

the slope of the right limb of the kill curve equals the loga

rithm of the rate of survival and an estimate of rate of 

survival may legitimately be made from the trend of the data 

when; 1. There is equal recruitment to the hunted herd each 

year; 2. There is equal vulnerability to hunting for the age 

classes being considered; 3. The survival rate experienced by 

these age classes is constant with respect to both time and 

age. 

In Eberhardt's treatment of the Michigan data (1960) he 

used the rate of decline between age-classes as the principal 

estimate of survival based on age distributions alone in the 

manner of Hayne and Eberhardt (1952). Because the estimates 

derived in this way for the several regional populations in 

Michigan all varied around .70 and did not agree with estimates 
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from other sources, he concluded that the age distributions 

alone did not provide the best possible estimate of survivor

ship. He obtained his estimates of probabilities of survival 

in this way for use with other life history features. He 

believed the method depended upon a basic assumption of a 

constant recruitment rate which is seldom met in practice. 

Unless the female herd remained absolutely constant, he 

believed that the ratios used to estimate survival would actu

ally be a composite of survival and reproductive rates, and of 

uncertain value. For these reasons he agreed with Ricker 

(1958) and Beverton (1954) that some supplemental data are 

essential to use the method. He presented correlations with 

other indices to population and kill levels. 
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THE APPROACH TO THE PROBLEM 

Population analysis, as envisaged by Quick (1958), Leslie 

and Ranson (1940), Lotka (1939) , Deevey (1947) , and Cole 

(1954), became possible for white-tailed deer populations when 

Severinghaus (1949) developed criteria for determining the age 

of deer based on replacement time and wear of their teeth. 

The ages of deer taken from a sample of the kill in Iowa 

have been routinely collected since 195 3 by the Iowa Conserva

tion Commission. Data for the years 1963 through 1966 were 

collected under the supervision of the author. Eberhardt 

(1960) suggests that a minimum of four years data is essential 

for analysis purposes. In this study, age data from the years 

1959 through 1966 have been assembled. This consists of 2,858 

female and 3,359 male deer aged over the eight year period. 

Collection of Data 

Age and sex ratios 

Procedures for collection of age and sex data from a 

sample of the kill during the open season have varied somewhat 

but in general the differences were designed to obtain a 

larger sample, make more efficient use of manpower, or improve 

the identification of the sample data. 

A field forco of 20 to 40 biologists and assistants 

visited cold storage lockcr plants throughout the state during 

and immediately after each deer season to obtain a sample of 
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the kill. The sex, age, and county of kill of the deer, and 

license number of the hunter were recorded every year and 

additional data on other factors such as health were collected 

in some years. Biologists were assigned a number of counties 

in which to visit plants so that nearly all locker plants were 

visited but there was no attempt to stratify the collection of 

the sample but merely to obtain the largest sample possible in 

the time available. 

Foetal counts 

In late 1965, it became apparent to the author that deter

mination of exploitation levels might hinge in part on natality 

factors operating in the herd as well as mortality factors. A 

two year effort was initiated to obtain embryo and foetal 

counts from road-killed does during the spring and late winter. 

This period corresponded to the latter part of the 190 to 210 

day gestation period of the deer and when significant numbers 

of female deer were being killed on the highway throughout the 

state. Data were collected by Conservation Officers on a 

voluntary basis in order to minimize personal biases from 

entering the study. They were asked to open the abdominal 

cavity and count the number of foetuses present. This informa

tion was recorded on a postal card form and mailed together 

with the jawbone from the animal to the author. This study 

was terminated in 19 67. 
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Road-kill records 

The records of numbers of deer killed by vehicles on 

highways are maintained to serve as an index to population 

levels among other reasons. These data again were submitted 

by Conservation Officers for each deer killed on highways in 

their district throughout the year. They did not become aware 

of all deer so killed but for those investigated a card form 

similar to the embryo survey postal card was mailed to the 

research station and this information was compiled annually. 

Hunter-kill and success 

Information on legal hunting kill and success by permit 

holders as used in this study are taken from the compulsory 

hunter report card sent to the Conservation Commission fol

lowing the season. These data provide the only way of deter

mining the kill which is satisfactory for manangement purposes. 

Success rates are derived from these kill reports as a ratio 

of deer killed to authorized permit holders who actually hunted. 

Organization of age and sex data 

The available data concerning age and sex were recorded 

on computer data cards for analysis with an IBM 360 computer. 

The column entries were as follows: 

Year License Sex Age County Checker Corrected 

Ê2Ê 

1-2 3-7 8 9-10 11-12 13-14 15-16 
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An analysis plan based on the populations of the many 

possible management zones with their component counties was 

prepared in matrix form for programming purposes. Computer 

programs were developed to perform the calculations and sum

mary analyses of the population parameters. The availability 

of these computer programs for possible use in the management 

of other corn-belt deer herds was a secondary objective of 

this effort. 

The various populations of interest 

Since 1963, hunters have received permits to hunt in 

specified areas only, in order to apportion better the hunting 

effort with deer herds. Until 1967, the state had been divided 

into two zones with the area of these zones changing each year 

to adjust the hunting pressure. The two zone plan analyzed in 

this study was the 1966 zoning plan and is referred to as 

Analysis Plan #2. 

In 1967, the division created six zones. This plan is 

referred to as Analysis Plan #1. It was considered desirable 

to analyze the data to interpret the effects of various 

management plans, in this case, zoning. Therefore, on th.e 

basis of zoning with eight years of data, and also looking at 

statewide data over the eight years of concern, (Analysis Plan 

#9), there are seventy-two populations of interest. 

Mustard (1963) divided the state into four ecological 

regions for management purposes= Egçh region held habitats 
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which varied in type and vulnerability of deer to hunting. 

Over the eight years, this suggests thirty-two more popula

tions of interest (Analysis Plan #7). 

Data have also been collected personally from a deer 

population which represents the highest in Iowa per unit area. 

These data were collected during the deer seasons at the Iowa 

Army Ammunition Plant, near Burlington, Iowa for the years 

1964-1966. The data for 1963 for this area were collected by 

graduate students working under the Iowa Cooperative Wildlife 

Research unit, at the request of the author. These data add 

four more populations to the analysis and are processed as 

Analysis Plan #8 for programming purposes. 

These various analysis plans would consider, as outlined 

above, a total of 108 populations. The data were further 

organized by treating the sexes separately and combined. In 

this manner, three hundred and twenty-four populations were 

treated by the methods outlined in the literature. 

Methods of Analysis 

Slope of kill curve 

Iowa data present a kill curve that is constantly de

scending from the youngest class to the oldest. Formal methods 

were used to determine the slope of kill curves and the regres

sion of frequency on age was calculated for the entire distri

bution (transformed data) and a b value determined together 
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with confidence limits. The b value would represent the appar

ent survival rate of Hayne and Eberhardt (1952). Since the 

whole curve slopes to the right, the data were used beginning 

with the youngest class. Regression coefficients were computed 

2 
for all 324 populations. A computation of R was made to 

determine the proportion of the variance explained by the 

regression. 

Life table analysis 

Life tables were constructed for each population after 

Deevey (1947) and Pearl (1940). A rather long or unabbreviated 

form of the life table was used since this study was seeking 

understanding of relationships. The columns used in the table 

and definition of terms are as follows: 

X = age in years, stated as an interval 

I 

d = the number dying within the age interval stated in 
* the X column 

d = d' converted to a scale of 1000 
X X 

1 = the number surviving at the beginning of the age 
* interval stated in the x column. In another 

context, when a decimal point is placed three 
places to the left, the 1^ column becomes the 

probability of survival to the beginning of the 
age interval stated in the x column 

q = the number dying in the age interval divided by the 
number of survivors at the beginning of the inter
val. The rate of mortality in the life table 
format. 

L^ = the average number living during the age interval 

e^ = the mean expectation of life or the mean further 
expectation of life in years. 



www.manaraa.com

22 

Data can be assembled in a life table as described for 

purposes of summary in several ways. Quick, Mosby, 1960), 

classifies the data organization as time-specific, age-specific 

(frequently considered as a cohort), and in composite form as 

in Murie's analysis of the big-horn sheep (1944). The treat

ment in this study was by both time-specific and by cohort 

which represents 648 life tables constructed by computer. 

Composite distributions were assembled during Chi-square ana

lysis to obtain a mean distribution for the years under study. 

Slope of the 1^ frequency 

The regression of 1^ frequency on age-class was computed 

for all populations from transformed data and the b value cal-

2 
culated with confidence limits and R . The b value again 

represents the slope of the regression line and is another 

estimate of the rate of survival. The 1^ frequency is taken 

from the 1^ column of the life table for each population and 

the b value computed on a time-specific and a cohort basis. 

Ratio programs 

Representation of classes Eberhardt (1960) has sug

gested a way in which the under-representation of the fawn 

class can be identified. The method is to compute the ratio 

of fawns to adults in a given year and compare it to the ratio 

of the same group one year later, that is, the ratio of 1-1/2*8 

to 2-1/2's and older deer. This has been done in this study 



www.manaraa.com

23 

and also taken a step further. Ratios have been computed so 

that the initial ratio of the cohort can be followed through

out the life of the cohort. 

The straight right limb method The apparent survival 

rate can be computed from the right limb of the kill curve 

when plotted on semi-log graph paper. Hayne and Eberhardt 

(1952) list this method as one of the ways to determine the 

apparent survival rate. When so plotted at least the right 

limb of the curve should be reasonably straight because of the 

relatively equal vulnerability of the older classes. The 

method consists of dividing the sum of the numbers in all age 

classes older than the first class of the straight segment by 

the same sum plus the number in the first class. Such a ratio 

is equivalent to the ratio of 1^ to 1^ in the 1^ column of the 

life table. This ratio as well as other ratios representing 

survivorship to each younger 1^ age class of the 1^ distribu

tion were calculated on a time specific basis and a cohort 

basis = 

Calculation of lambda and Lotka's "r" 

Mean length of a generation The method based on the 

mean length of a generation is an approximate method of calcu

lation of r. It is adequate for human populations but for some 

highly fecund lower animals it may not be sufficiently accurate. 

The geometric increase of a population is given by the equation 
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where is the number of reproducing individuals at time t^, 

is the number of reproducing individuals at time t, and r 

is the intrinsic rate of natural increase. The number of 

individuals at the end of a generation will be 

.rT 
'T "O^ 
N _  =  N _ e  ,  

where T is the mean length of a generation. Hence, 

N 
T rT 

NL/N is the ratio of total female births in two successive 
T o 

generations, or net reproduction rate and designated R^. Thus 

R = 
o 

and 

and 

A = 

R^ and T can be estimated from age-schedules of births, m^, 

and age-schedules of survival rates, 1^. R is equal to the 

sum of the cross products (sum of l^m^ values). T may be 

approximated according to the following model: 

T _ " 

• 
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The parameters R^, T, r, and lambda have been computed from 

the age schedules of births and the age-schedules of survival 

rates (probabilities) for the 324 populations of interest in 

this study. 

Precise value of r The precise value of r may be 

obtained by solving Lotka's equation 

,00 

JO 

In order to determine whether the method of mean length of a 

generation is accurate enough for deer population analysis a 

substitution of values obtained was made. An example of the 

precise calculation of r may be found for human populations 

in Dublin and Lotka (1925, appendix) or Lotka (1939, p. 68). 

The stable age distribution 

The stable age distribution may be calculated from the 

life table and the intrinsic rate of natural increase. If 

is the proportion of the population of stable age-distribution 

aged between x and x + dx and b is the instantaneous birth

rate, 

S = be-rx 1^ . 

Stable age-distributions were calculated for the 108 

female populations of interest using Lotka's methods. Chi-

square tests of heterogeneity were performed between the actual 
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age distributions and the calculated stable age distributions. 

This test serves to verify the existence of a stable state in 

the actual population and to validate use of the method of 

calculating r which requires a stable age distribution. Coale 

(196 8) suggests that a population may be considered as essen

tially stabilized when the ratio of each annual age group to 

current annual births is a multiple arbitrarily close to one— 

say .98 to 1.02— of the ratio in the stable population. He 

further states that no more than "w" years (w being the 

greatest reproductive age attained) after the births are expo

nential, the age distribution becomes stable. 

Coale's ratio was modified to provide a new measure of 

stability in which the criteria are more appropriate to the 

variability of the data and also less stringent. A ratio of 

the net reproductive rate (R^) in the sample age-distribution 

to the net reproductive rate (R^) of the calculated stable 

age=distribution was considered to be a valid measurement of 

the differences present in the two distributions. This ratio 

was calculated for each female population of interest. 

Methods of Comparison 

It is known that the methods described above have varying 

degrees of accuracy and may not all be entirely valid. The 

best method of estimating levels of exploitation in the several 

populations should require as high a level of accuracy as is 

possible consistent .with the representative nature of the data. 
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This is so because of the extremely high level of exploitation 

in Iowa which may very well surpass recruitment in some of 

these populations. With so little margin for error the best 

method should have a high degree of accuracy and consistency. 

The validity of techniques used together with their level 

of accuracy were compared with the apparent superior method to 

determine the most appropriate analysis plan for deer in Iowa 

or in the corn belt. 

Definition of Terms 

THE NET REPRODUCTION RATE, R^ This is the multiplication per 

generation. It is exprescr^ thn ratio of total female 

births in two successive generations. 

THE MEAN LENGTH OF A GENERATION, T This is the mean time 

from birth of parents to birth of offspring. 

THE INTRINSIC RATE OF NATURAL INCREASE, Lotks's r the con

stant rate of increase of a population approaching its 

stable age-distribution. 

THE FINITE RATE OF NATURAL INCREASE, Lambda This is the 

multiplication per female in unit time of a population of 

stable age-distribution. This is best defined by the 

equation lambda equals e to the r^^ power. 

THE STABLE AGE-DISTRIBUTION This is the age-distribution 

which would be approached by a population of stable age-

schedule of birth-rate and death-rate (i.e., and 1̂  ̂

constant) when growing in unlimited space. 
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THE (STATISTIC) This is the average number of female 

births for any particular parental age-group of pivotal 

age x. 

THE 1^ (STATISTIC) This is the proportion of individuals 

alive at the beginning of the age-interval for any par

ticular age-group of pivotal age x. It can also be 

considered as the probability of living to the beginning 

of age-interval x. The 1^ table gives the age-schedule 

of survival. 
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RESULTS OF ANALYSIS OF AGE DISTRIBUTIONS 

Test of Aging Variability 

A Chi-Square test of heterogeneity of the ages assigned 

to the collected jawbones of the 1966 season by the field 

checkers compared with the age assigned by the author revealed 

a significant difference between checkers (Table 1). 

Inspection of the Chi-Square value for the various 

checkers revealed that the Chi-Square for checker number eight 

accounted for all of the significance. Examination of the 

basic data revealed that the excess of error occurred in aging 

of older animals. Since the assignment of ages to this age 

category is somewhat arbitrary (Severinghaus, 19 49), the data 

collected by this checker was retained. Further no statis

tical significance is attached to the Heterogeneity Chi-Square 

value obtained because the differences occur in the older 

classes. 

These results of the Chi-Square analysis are interpreted 

to mean that data on age composition of Iowa deer populations 

may be used in population analysis with some expectation that 

they are representative of the true ages of the animals repre

sented in the sample. Since the majority of the checkers have 

had continuous service in field aging of deer, these results 

are assumed to apply to all data for the years 1959 to 1966, 

inclusive. 
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Table 1. Test of significance of errors in aging 

Checker 
number 

Sample 
size 

Number 
correct 

Number 
Incorrect 

Chi-
Square 

6 46 

8 II 

11 20 

12 62 

13 83 

14 23 

16 17 

17 25 

19 282 

20 20 

21 68 

23 136 

Combining: 

#7, #9, #15, 
#18, #22, 
and #24 25 

564 

2 

43 

5 

17 

55 

78 

17 

14 

21 

24 

19 

63 

121 

Critical value x .05, 12 d.f. 

22 

499 

= 21.0 

3 

6 

3 

7 

5 

6 

3 

4 

4 

1 

5 

15 

65 

1.128 

20.055 

.241 

.311 

2.453 

4.786 

.624 

.492 

.208 

.830 

1.156 

.290 

. 0 0 6  

X = 32.580 
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Sampling and Systematic Bias in Aging Results 

Randomness 

The necessity of obtaining data at locker plants intro

duces a factor of bias. It is fairly common in the less 

prosperous regions for deer to be processed at home. Bias 

enters because it is expected that the size of the deer bagged 

influences the decision whether to have it processed at a 

locker plant or at home. The price of processing climbed to a 

high of $15 in 1966 from about $5-$8 in 1959. This would tend 

to further influence a decision concerning processing a fawn 

deer weighing 60-100 pounds, for example. 

There were also observed differences in processing or 

handling in locker plants. Plants located in good deer habitat 

would have many customers on the Monday following a weekend 

opening of the deer season. Because of space limitations, 

operators were known to quickly dispose of small deer, separate 

the head portion from the identifiable body portion with the 

license number on it, or reserve the big old bucks with the big 

racks for viewing by customers and curious townspeople. It is 

believed that the best data were not available from the big 

processors because of these circumstances. 

Bias in aging 

It is common for deer ul 1-1/2 years to be callod 2-1/2 

years because of the early replacornont of the third premolar 

under conditions of good nutrition. This mistake was fairly 
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common and upset the age-distributions of the early years of 

the study. When sample sizes were small there appeared to be 

even greater irregularity in the distributions than expected 

to the extent that only when sample sizes reached about 100 

females was regularity to be expected. 

Incorrect aging of the older classes, 3-1/2 and older, 

was also a factor which introduced bias. This category re

presented only a small portion of the deer aged in the study, 

perhaps about 12%, and did not contribute greatly to the sig

nificance of the results. 

Differential vulnerability 

A kind of systematic bias associated with the differential 

vulnerability of the several age classes is revealed by Table 

2 which traces the increase in this ratio throughout the life 

of the cohorts born from 1959 until 1966. 

The fawn-adult ratio present at fawning time based on 

fertility rates presented in Table 3 is .810. With this value 

as a standard, it would appear that there is under-representa-

tion of fawns in the samples of this study. It is probable 

that there is unequal mortality during the first six months of 

life and thus the data are more a measure of this mortality 

than under-representation of fawns in the sample. 

The change in this ratio between six months and 1-1/2 

years may be significant, however. Deer in these two categories 

have similar survival rates in a stable population. Thus, the 
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Table 2. These data compare the fawn adult ratio during year 
one of a cohorts life with the same ratio during 
succeeding years of life. The fawn-adult ratio at 
birth in the population should be .810 at the biotic 
potential of the species in Iowa 

Cohort Fawn to 1-1/2 to 2-1/2 to 3-1/2 to 
year of adult 2-1/2 + 3-1/2 + 4-1/2 + 
birth ratio ratio ratio ratio 

Females - statewide sample 

1959 .626 .766 1.79 1.79 
1960 .629 .679 2.33 1.27 
1961 .748 .707 2.39 1.83 
1962 .770 .755 2.45 0.70 
1963 .787 1.06 2.12 1.55 
1964 .760 .811 1.45 
1965 .750 .928 — —  

1966 .692 —  —  —  —  —  —  

X .720 .815 2.09 1.42 

Males - statewide sample 

1959 .625 1.010 1.208 2.211 
1960 .857 .877 1.213 1.563 
1961 .814 .874 1.049 1.500 
1962 .675 .863 1.457 2.125 
1963 .702 1.017 1.360 1.639 
1964 .933 1.441 .909 — 

1965 .583 1.103 —  —  — 

1966 .751 - — — 

X .742 1.026 1.199 1. 808 

Combined males and females I - statewide sample 

1959 .626 .887 1.471 2.029 
1960 .750 .777 1.670 1.460 
1961 .783 .789 1.496 1.630 
1962 .722 .814 1.876 1.333 
1963 .740 1.040 1.666 1.560 

1964 .845 1.143 1.145 - -

1965 .650 1.016 
1966 .723 —  —  

X .730 .924 1.554 1.602 
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Table 3. Age schedule of fertility, Iowa deer, 1967 

Parturition Number with embryos Total Total Embryos 
age present each class does embryos per doe 

0 12 3 

Fawns 1 15 7 0 23 29 1.26 

Adults 0 _6 26 3 35 §1 1.914 

Totals and 
Means 1 21 33 3 58 96 1.655 

change from .720 females per adult to .815 females and from 

.742 males per adult to 1.026 one year later reveals a lesser 

vulnerability of fawns and a consequent under-representation 

of the fawn class in the samples based on the mean value of 

these data. 

Yearling females alone appear in the approximate propor

tion born and as would be expected if all classes were equally 

vulnerable, a ratio of .815 females per adult older than 1-1/2 

years. 

The sharp increases of these ratios beyond 1-1/2 is 

attributed to the increased although somewhat equal vulner

ability of the 2-1/2 and older age classes. The greater 

sampling error due to aging and to small numbers of these ages 

in the sample prevents these ratios from being comparable. 
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It appears that the data do give a measure of relative 

vulnerability, as follows; in the order of least vulnerability: 

female fawns, male fawns, yearling females, yearling males, 

older females, older males. The older animals seem to have a 

gradually increasing vulnerability as measured by the gradual 

increase in mortality rate exhibited by the mean values taken 

from the eight year composite 1^ survivorship curve of Figure 

1 for females and the shorter age base of the male population 

(Appendix B). The greater old male vulnerability is probably 

the result of greater pressure upon this component of popula

tion. This is also exhibited by the 8 year composite Ix 

survivorship curve for males compared with females (Figure 1). 

Survivorship Curves 

The 1^ column of the life table provides the data for 

survivorship curves. A comparison of representative curves 

from southern Michigan, Southern Minnesota, Illinois, Ohio and 

Iowa is made in Figure 2. These populations are all rather 

highly exploited and have been for more than a decade. The 

curve for Iowa demonstrates the steepest slope and thus indi

cates the highest level of exploitation of the five states' 

populations. 

Survivorship curves from unexploited or lightly exploited 

populations are presented in Figure 3. All curves in Figures 2 

and 3 are composed from time-specific life tables. 
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Figure 1. Survivorship curves (1^) of the Iowa statewide 

female deer populations, 1959-1966, (time-
specific basis), compared to the mean composite 
1^ curves for males and females 

The dashed line illustrates the comparison with 
the calculated stable 1^ distribution for the 
individual years. 
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Figure 2. Comparison of survivorship curves (1^) from 

mid-western states for white-tailed deer, 
time-specific basis for 

Data taken from Nixon (1968), for data other 
than Iowa. Iowa curve taken from this study, 
1966, statewide population. 
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Figure 3. Survivorship curves from relatively unexploited 
populations of white-tailed deer from a 
Nebraska closed season area, Havel (1966) and 
black-tailed deer populations from California 
habitat types (Tabor and Dasman, 1957) 
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All authors reviewed are in agreement that exploitation 

tends to reduce the age base of the kill curve or survivor

ship curve. This is the central phenomena on which the hypo

thesis being tested in this study is based, namely; if the 

shortening age base is a phenomena directly related to exploi

tation, can the survivorship curve of the age distribution 

reveal the "level" of exploitation? 

Theoretical basis 

Lotka's theory of stable age-distributions presented 

earlier must be considered in any test of methods of determin

ing survival rates. This body of theory and methods as devel

oped by Lotka (1907a, b, 1922, 1925, 1939); Sharpe and Lotka 

(1911), Dublin and Lotka (1925), Dublin, Lotka, and Spiegelman 

(1949) , Andrewartha and Birch (1954) , Leslie and Ranson (1940), 

Leslie (1945, 1948), Cole (1954, 1957), Coale (1957, 1968) has 

been successfully applied to human population study as well as 

other species and thus, most probably, criteria applied in this 

study must conform to its tenets. The results presented here

in will be discussed in the light of this theory. 

Statewide populations 

Survivorship curves for the statewide populations are 

presented in Figure 1 on a time specific basis and in Figure 4 

for the age specific basis. Irregularities in the curves for 

the older classes are indicative of aging errors as well as 
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Figure 4. Survivorship curves (1^) and a dynamic basis for 

the Iowa statewide deer population compared with 
an 1 curve constructed on a composite basis 

for 1961-1964 cohort years of birth 

The dashed curve represents an 1„ curve from the 

corresponding calculated stable age-distribution. 



www.manaraa.com

44 

YEAR COMPOSITE 

62 63 64 
1000 

500 

100 
X 

50 



www.manaraa.com

45 

small sample error. The aging criteria are not very well 

developed for older deer. 

Time-specific populations In a Chi-Square test of 

heterogeneity, the 1960, 1962, and 1965 populations were sig

nificantly different than a composite population for all eight 

years of data. Irregularities in the older age classes 

apparently would account for the differences in these popula

tions. It is quite apparent from an inspection of the plotted 

curves that there is little difference between these 1^ curves 

for survivorship for the first five categories at least. 

Actually, the 1966 curve and the composite curve for the years 

are virtually identical. This is interpreted to mean that the 

age distribution for the eight years of data is identical for 

the important areas of the curves, the younger age classes. 

Approximately ninety-five percent of the deer in chese popula

tions are of the first four age-classes. The sampling and 

aging bias which is frequently apparent in the data of this 

study for older age classes has little bearing on the value of 

these data and will be disregarded or corrected for when 

necessary. 

Age-specific populations Similarly, the data plotted 

as the frequency of survivorship of a cohort for the years 

1962-1964, show a striking degree of parallelism (Figure 4). 

Chi-Square tests indicate no statistically significant 

difference between these data and the calculated stable age 

distribution or with the six year mean or composite age 
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distribution. Results of Chi-Square analysis are found in 

Table 4. 

Significance of 1^ curves 

In terms of age base changes, there apparently has been 

no statistically significant change in the age base of these 

populations over the years of the study. 

In terms of Lotka's theory of stable age distributions, 

these populations have been stable over these years when viewed 

through either age specific or time specific analysis (Table 

4 and 5. 

Age schedule of fertility 

Data concerning reproductive rates are presented in Table 

3. Rates are established for only two categories of age — 

fawn and adult — due to insufficient sample size. Haugen 

(1961) has presented preliminary results of a study made from 

19 57-1959. He found a similarly high rate of production from 

fawns with nearly all adults producing twins and a small per

centage dropping triplets. There were very few barren females 

in either study. It will be assumed in this study that the 

rates of Table 3 do not differ significantly from rates pre

vailing at the beginning of the period for which data are 

available. 1959, and can be considered constant tor. these 

purposes. 



www.manaraa.com

Table 4. Statistics derived through application of Lotka's 
theory of stable age-distributions to distributions 
of thirty-four age-specific female white-tailed deer 
populations, 1959-1966, from various management 
zones in Iowa 

Cohort Mean length Net Intrinsic 
year of of a reproductive rate of 
birth generation rate natural 

increase 

T 
*o r 

Analysis Plan #1 - Zone 6 

1959 2.092 .9169 -.04147 
1960 1.973 .892 -.05807 
1961 2.1156 .970 -.01432 
1962 1.700 .712 -.19974 
1963 1.8612 .830 -.10005 
1964 1.9142 .885 -.06408 

Analysis Plan #2 - Zone 1 

1962 1.901 .848 -.08675 
1963 1.972 .954 -.02404 
1964 1.917 .823 -.10158 

Analysis Plan #2 - Zone 2 

1959 1.864 .821 -.10609 
1961 1.640 .701 -.21636 
1962 1.927 .776 -.13138 
1963 1.813 .780 -.013691 
1964 1.919 . 836 -.09331 

Analysis Plan #7 - Zone 1 

1959 2.658 1.043 +.01573 
1961 1.989 .842 -.08655 

* 
Significant beyond the .001 level. 



www.manaraa.com

48 

Table 4 (Continued) 

Ratio of 
increase 

(or decrease) 

Ratio of R 
to R of 

o 
calculated 
stable 

distribution 

Tests of stability 
Chi-Square 

value 
(expected 
from 8 

year mean) 

Chi-Square 
value 

(expected 
from calc. 

stable) 

X2 

.959 4.4341 10.4094 

.944 5. 3411 17.3982 

.985 — 25.8679* 10.7317 

.819 0.97 35.4856* 17.2634 

.905 — 3.5737 8.4189 

.938 — 4.2505 12.4197 

.917 — 18.4089 15.8918 

.976 1.2390 27.0352* 

.903 1.02 16.6794 2.8730 

.899 1.03 

.805 1.007 32.6182* 29.5452* 

.877 — 19.6470 22.1389* 

.872 1.01 6.9265 7.5669 

.911 1.05 19.8394 3.3137 

1.016 0.99 82.0891* 20.4497 
.917 1.001 48.8523* 68.7583* 
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Table 4 (Continued) 

Cohort Mean length Net Intrinsic 
year of of a reproductive rate of 
birth generation rate natural 

increase 

T R r 
o 

Analysis Plan #7 - Zone 2 

1959 1.977 .891 -.05865 
1960 1.921 .847 -.08671 
1961 1.972 .873 -.06871 
1962 1.9488 .784 -.12506 
1963 1.940 .893 -.05856 
1964 1.936 .841 -.08972 

Analysis Plan #7 - Zone 3 

1963 1.478 .57 4 -.37550 
1964 1.868 .853 -.08486 

Analysis Plan #7 - Zone 4 

1961 1.755 . 735 -.17529 
1962 1.811 .748 -.16020 
1963 1.917 .888 -.06187 
1964 1.911 .673 -.07102 

Analysis Plan #9 - Zone 1 

1959 1.914 .864 -.07649 
1960 1.918 .887 -.06280 
1961 1.694 .742 -.17592 
1962 1.922 .803 -.11394 
1963 1.873 .843 -.09107 
1964 1.919 .832 -.09565 
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Table 4 (Continued) 

Ratio of 
increase 

(or decrease) 

Ratio of R 
to R of ° 

o 
calculated 

stable 
distribution 

"o / "o 

Tests of stability 
Chi-Square 

value 
(expected 
from 8 

year mean) 

Chi-Square 
value 

(expected 
from calc. 

stable) 

.943 

.917 

.934 
. 8 8 2  
.943 
.914 1.04 

12.0872 
1.1707 
1.9131 

11.6611 
6.6907 
2.3796 

20.8704* 
9.2859 
9.8665 

11.0061 
9.5576 
4.5920 

687 
919 

83.6633* 
26.8604* 

17.5693 
18.0117 

839 
852 
940 
931 

0.98 
0.96 

21.1248* 
12.2910 
12.6311 
23.9751* 

26.9443* 
19.7405 
17.2480 
9.7510 

926 
,939 
839 
,892 
,913 
.909 

1.04 
0.99 

0.97 

5.2197 
17.6377 
19.2947 
11.4238 
4.1982 
9.3025 

31, 
39, 
16, 
15, 
9, 
3 

7983* 
5374* 
4211 
7996 
4043 
2634 
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Table 5. Statistics derived through application of Lotka's 
theory of stable age-distributions to distributions 
of forty-one time-specific female white-tailed deer 
populations, 1959-1966, from various management 
zones in Iowa 

Year Mean length 
of a 

generation 

T 

Net 
reproductive 

rate 

Ro 

Intrinsic 
rate of 
natural 
increase 

r 

Analysis Plan #1 - Zone 6 

1959 1.839 .841 -.09431 
1961 1.902 .828 -.0991 
1962 1.687 . 707 -.20526 
1963 1.993 .869 -.07073 
1966 1.985 .7987 -.11323 

Analysis Plan #2 - Zone 1 

1959 1.972 .908 -.04912 
1961 1.795 . 821 -.10968 
1962 1.787 .832 -.10297 
1963 2.016 .900 -.05206 
1964 1.978 .898 -.05443 
1965 2.065 .910 -.04566 
1965 2.080 9 24 -.03819 

Analysis Plan #2 - Zone 2 

1959 1.929 . 8996 -.05483 
1960 2.163 1 = 014 +.00634 
1961 2.037 .889 -.05794 
1962 2.018 . 855 -.07785 
1963 1.851 .778 -.13534 
1965 2.247 .920 -.03703 
1966 2.025 .881 -.06252 

* 

Significant beyond the .001 level. 
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Table 5 (Continued) 

Ratio of 
increase 

(or decrease) 

Ratio of R 
to R of ° 

o 
calculated 

stable 
distribution 

/ "o 

Tests of stability 
Chi-Square 

value 
(expected 
from 8 

year mean 

x2 

Chi-Square 
value 

(expected 
from calc. 

stable) 

.910 

.906 

.814 

.932 

.893 

1.04 
0.97 
1.04 

.952 

.896 

.902 

.949 

.947 

.955 

.963 

.947 
1.006 
.944 
.925 
.873 
.964 
.939 

0.99 
0.97 
0.98 
1.04 

36.0554* 
26.5864* 
23.4075* 
11.1450 
11.4407 

14.7888 
20.5864 
4.3303 
4.4006 

16.3645 

27.4077* 
18.0222 
12.6875 
8.7783 
5.4426 

25.7593* 
13.7571 

14.1843 
14.3127 
13.8420 
8.6685 

20.8525* 
24.7820* 
7.2095 

27 
43 
4 

14 
23 
69 
10 

0095* 
5505* 
9272 
,7412 
,0195* 
,4297* 
, 2576 

27.3792* 
21.9041* 
15.0994 
39.9604* 
36.8599* 
49.9778* 
18.8586 
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Table 5 (Continued) 

Year Mean length Net Intrinsic 
of a reproductive rate of 

generation rate natural 
increase 

T R 
o 

Analysis Plan #7 - Zone 2 

1959 1.929 .902 -.05323 
1961 1.943 . 864 -.07550 
1962 1.792 .731 -.17463 
1963 1.801 .754 -.15702 
1964 1.848 .799 -.12132 
1965 2.076 .889 -.05647 
1966 1.963 .889 -.06016 

Analysis Plan #7 - Zone 3 

1962 1.861 .828 -.10143 
1963 1.978 .851 -.08146 
1966 2.439 1.010 +.00421 

Analysis Plan #7 - Zone 4 

1961 1.797 .788 -.13255 
1962 1.919 .839 -.09133 
1964 1.830 . 773 -.14107 
1966 1.951 . 8998 -.05412 

Analysis Plan #9 - Zone 1 

1959 1.898 .878 -.06850 
1960 2.042 .961 -.01963 
1961 1.941 . 866 -.07432 
1962 1.961 .843 -.08700 
1963 1.887 . 811 -.11132 
1964 1. 765 . 735 -.17423 
1965 2.044 .863 -.07183 
1956 2.010 .876 -.06604 
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Table 5 (Continued 

Ratio of 
increase 

(or decrease) 

Ratio of R 
to R of ° 

o 
calculated 

stable 
distribution 

«0 / 

Tests of stability 
Chi-Square 

value 
(expected 
from 8 

year mean 

x2 

Chi-Square 
value 

(expected 
from calc. 

stable) 

.948 

.927 

.839 

.855 
. 8 8 6  
.945 
.942 

0.95 
0.98 
1.03 
1.03 

.904 

.922 
1.004 

1.06 
1.03 
1.04 

.876 

.913 

.868 

.947 

1.05 
1.04 
0.97 

.934 

.981 

.928 

.917 

.895 

. 840 

.931 

.936 

1.01 
1.01 
0.95 
0.999 
1.05 

27.8569* 
12.2332 
12.7053 
14.3320 
12.0801 
21.8384* 
10.6301 

16.1296 
18.0100 
4.6270 

11.7815 
5.3936 

18.1877 
7.8254 

12.2192 
25.5342* 
90.1553* 

27.6716* 
15.5237 
45.6787* 

51.0879* 
15.2788 
23.4653* 
39.3030* 

59.5657* 
44.1401* 
18.8875 
20.4084 

18.7046 
13.9604 
5.1331 
8.9946 
7.6538 

16.2766 
26.7461* 
8.3977 

16.9785 
23.5989* 
19.2251 
31.7915* 
21.0886* 
13.4114 
26.7971* 
14.2454 
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Life table analysis 

Life tables constructed by computer are found in Appendix 

A. Both cohort populations and time specific populations were 

so treated. It is from these analyses that survivorship is 

obtained. Survivorship, considered to be survival rates by 

Eberhardt, 1960, comes from the 1^ column of the life-table. 

It denotes the number surviving from a cohort of 1000 deer 

based on the frequency of deaths in each interval. As such, 

it is usually most properly employed for analysis of cohort 

(dynamic, or age specific) populations. Certain assumptions 

must be met to use the technique for time-specific or composite 

populations. Survivorship curves from the populations in this 

study appear in various places in this section. The life table 

is a convenient form by which to summarize data. The various 

parts of the tables will be used in further analysis, such as 

the mean expectation of life, and the mortality rate per 1000 

(e^ and Q^). 

Survival Rate Ratios 

Survival rates have been calculated for all populations. 

They appear in Table 6 and Table 7 for the stable populations 

selected for study. The three sets of values presented as 

estimates of survival all depend on an idea most thoroughly 

presented by Ricker (194 8) and adapted for deer population 

application by Hayne and Eberhardt (1952) and Eberhardt (1960). 
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Year 

Anal] 

1959 
1961 
1962 
1963 
1966 

Anal; 

1959 
1961 
1962 
1963 
1964 
1965 
1966 

Anal; 

1959 
1960 
1961 
1962 
1963 
1965 
1966 

Statistics derived from age distributions of forty-
one time-specific female white-tailed deer popula
tions, 1959-1966, from various management zones in 
Iowa 

b value for 
regression 

of 1 on age 
X ^ 

b value for Coefficient 
regression of variance 

of on age 

Plan #1 - Zone 6 

.5029 

. 4892 

.4443 

.5206 

.4560 

. 897 

.885 

.896 

.872 

.953 

3952 
,5266 
,3436 
,441 
,4599 

Plan #2 - Zone 6 

.5184 

.5159 

.5144 

.4952 

.4475 

.4668 

. 4541 

.912 

.945 

.896 

.918 

.951 

.965 

.947 

4450 
4997 
3874 
4597 
4311 
4747 
4358 

Plan #2 - Zone 2 

. 4760 

.5125 

. 4566 

.5293 

. 3601 

.4729 

.5056 

.983 

.980 

.965 

.957 

.942 

.918 

.954 

499 
5091 
,5048 
4816 
,4359 
,5042 
,4807 
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Table 6 (Continued) 

Coefficient Eberhardt's Mean Complement of 
of variance ratio of expectation mean of mortality-

survivorship of further (Q ) thru 4th 

^1-1/2 +) age interval 

(R2) Si ^ s. 

.918 

.934 

.947 

.982 

.941 

.951 

.906 

.939 

.987 

.971 

.993 

.943 

.979 

.989 

.996 

.975 

.985 

.973 

.988 

.551 

.588 

.488 

.528 

.476 

.529 

.612 

.525 

.546 

.525 

.590 

.536 

.511 

.603 

.586 

.606 

.582 

.519 

.509 

1.54 
1.61 
1.41 
1.57 
1.48 

1.57 
1.62 
1.54 
1.60 
1.59 
1.63 
1. 58 

1 . 6 8  
1. 79 
1.66 
1.57 
1.51 
1.58 
1.62 

.520 

.510 

.430 

.500 

.465 

.535 

.485 

.480 

.510 

.480 

.495 

.525 

.490 

.560 

.500 

.460 

.425 

.450 

.485 
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Table 6 (Continued) 

Year b value for Coefficient b value for 
regression of variance regression 

of D on 
X 

age of 1 on 
X 

Analysis Plan #7 - Zone 2 

1959 . 4404 .935 . 4369 
1961 . 4549 .913 .5134 
1962 .4723 .943 .3853 
1963 .4965 .961 .3836 
1964 .4424 .942 . 4058 
1965 .4573 .984 . 4762 
1966 .4533 .954 . 4435 

Analysis Plan #7 - Zone 3 

1962 .5347 .867 .4106 
1963 . 3884 .834 .4422 
1966 .5355 .9L(, . 5638 

Analysis Plan #7 - Zone 4 

1951 . 4880 Q 7 0 . 3 7 61 
1962 .4318 .890 . 4458 
1954 .5898 .930 . 4231 
1956 . 4777 .932 . 4507 

Analysis Plan #9 - Zone 1 

1959 .4532 .956 .4727 
1960 .4896 .988 .4W22 
1961 .4380 .937 .5064 
1962 . 4901 .954 .4581 
1963 . 4074 .913 .4127 
1964 . 4131 .946 . 3883 
1965 .4556 .933 . 4763 
1966 . 4458 .967 .4^78 



www.manaraa.com

59 

Table 6 (Continued) 

Coefficient 
of variance 

(R^ 

Eberhardt's 
ratio of 

survivorship 
(2-1/2 +/ 
1-1/2 +) 

ST 

Mean 
expectation 
of further 

life 

o 

Complement of 
mean of mortality 

(Q^) thru 4th 

age interval 

.952 .5135 1.58 .530 

.948 .6102 1.63 .515 

.965 .5000 1.41 .455 

.976 .5538 1.47 .450 

.976 ,4623 1.47 .455 

.994 .5814 1.60 .495 

.964 .5500 1.54 .520 

.955 .5932 1.53 .430 

.988 .5833 1.54 .480 

.974 .4928 1.65 .480 

.969 .6538 1.49 .420 

.971 .6071 1.55 .450 

.975 .5000 1.50 .440 

.973 .5288 1.62 .505 

.975 .5158 1.65 .515 

.990 .5661 1.73 .525 

.984 .5956 1.64 .500 

.976 .5857 1.56 .465 

.993 .5696 1.54 .455 

.987 .4848 1,47 .435 

.993 .5521 1.60 .475 

.981 .5186 1.61 .505 
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Table 7. Statistics derived from age distributions of thirty-
four age-specific female white-tailed deer popula
tions, 1959-1966, from various management zones in 
Iowa 

Cohort Eberhardt' s Mean Complement of Sample 
year ratio of expectation mean of size 
of survivorship of further mortality (Q ) 

birth (2-1/2 +/ life thru 4th 
1-1/2 +) age interval 

®1 ®0 ^2 
n 

Analysis Plan #1 - Zone 6 
1959 .500 1.56 .480 72 
1960 .567 1.59 .495 79 
1961 .532 1.57 .515 106 
1962 .511 1.40 .380 118 
1963 .481 1.42 .410 133 
1964 .409 1.26 .475 103 
Analysis Plan #2 - Zone 1 
1962 .527 1.50 .450 142 
1963 .530 1,50 .465 170 
1964 .411 1.20 .455 146 
Analysis Plan #2 - Zone 2 
1959 .549 1.56 .455 174 
1961 .570 1.42 .350 244 
1962 .525 1.40 .420 293 
1963 .476 1.38 .400 276 
1964 .410 1.21 .455 247 
Analysis Plan #7 - Zone 1 
1959 .608 1.60 .560 38 
1961 .590 1.47 .375 62 
Analysis Plan #7 - Zone 2 
1959 .505 1.58 .475 88 
1960 .554 1.55 .490 89 
1961 .538 1.51 .470 113 
1962 .522 1.41 .450 116 
1963 .495 1.45 .465 119 
Analysis Plan #7 - Zone 3 
1963 .360 1.26 .265 111 
1964 .336 1.27 .445 75 
Analysis Plan #7 - Zone 4 
1961 .574 1.41 .405 120 
1962 .532 1.41 .410 146 
1963 .532 1.45 .435 150 
1964 = 398 1.25 .465 137 
Analysis Plan #9 - Zone 1 
1959 .546 1.61 .475 274 
1960 .589 1.63 .475 333 
1961 .562 1.47 .430 372 
1962 .530 1.44 .435 435 
1963 .497 1.43 .420 446 
1964 .414 1.21 .455 393 
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None of the three methods has merit in estimating survival 

rates except under very restrictive conditions which render 

the method unacceptable in analyses of exploited deer popula

tions. The values obtained are either not in agreement with 

trend data or appear to be proportional to other estimates but 

have values below that expected and inconsistent with the re

cruitment rate over the full eight year study period. This 

obviously would result in a disappearing population which, in 

the extreme suggested by these data, has not happened. 

Two sets of values do have merit as estimators of the 

degree of fore-shortening of the age base in the populations 

considered. That is, they are quantitative measures of the 

slope of the curve and thus are measures of the shortening 

age base. The question of validity and merit of these values 

obtained by the three methods will be evaluated in a later 

section. 

Calculation of Lotka Statistics 

This method depends on the stability, in Lotka's terms, 

of the population under study. Although the method was applied 

to all populations only those which met one of several criteria 

testing stability were selected for presentation (Table 4 and 

Table 5 ) . 

The Lotka statistics of r, lambda, and c were calcu-
t, X 

lated and are presented in Table 5 for time-specific populations 

and in Table 4 for age-specific populations. 
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The mean value of "r" for forty-one time-specific popu

lations was -.0823. This indicates that on the average these 

populations were declining. The corresponding value of lambda, 

the antilog of "r", was .921. 

The mean value of "r" for thirty-four cohort populations 

was -.099. Again, this represents declining populations. The 

antilog or lambda was .9047. 

These values do not represent any specific population but 

are presented as representative of the values obtained. The 

status of specific populations will be treated in a separate 

section. 

Prediction of Population Change 

Certain statistics of population phenomena appear to be 

of value because of apparent linear relationship with the 

statistic lambda. The relationship with "r" is curvilinear 

due to "r" being a logarithm. 

These relationships are illustrated in Figure 5 through 

14 where the several estimates of "s" (survival rate), and e 

(mean expectation of life) are plotted against the calculated 

values of lambda. The populations considered are in four 

groups: time-specific, age-specific, populations with large 

sample distributions, and large sample distributions to which 

smaller sample distributions with stability have been added. 

The regressions of the estimates of "s" and "e^" on lambda 

have provided prediction equations. Thus, a measure of the age 



www.manaraa.com

Figure 5. The b-value of the regression of 1^ on age for 

21 time-specific female populations compared 
to estimates of lambda 

Prediction equation indicated. 
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Figure 6. The b-value of the regression of 1^ on age for 

forty-one time-specific female populations 
compared to estimates of lambda 

Prediction equation indicated. 
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Figure 7. Plot of the regression of lambda on s, the 
survival rate, for twenty-four age-specific 
populations with prediction equation indicated 
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Figure 8. Plot of the regression of lambda on s for 
thirty-four age specific female populations with 
prediction equation indicated 
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Figure 9. Plot of the regression of lambda on s for 
forty-one time-specific populations with 
prediction equation indicated 
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Figure 10. Plot of the regression of lambda on e , 

the mean expectation of life for forty-
one time-specific female populations with 
prediction equation indicated 
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Figure 11. Plot of the regression of e^, the mean 

expectation of life, on lambda for thirty-
four age-specific populations of females 
with prediction equation indicated 
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Figure 12. Plot of the regression of e^, the mean 

expectation of life, on lambda for twenty-
one populations, female and time specific, 
with prediction equation indicated 
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Figure 13. Plot of the regression of s on lambda for 
twenty-one female time-specific populations 
with prediction equation indicated 
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Figure 14. A comparison of Hayne and Eberhardt's 
survival ratio with lambda for twenty-
one time-specific, stable, female 
populations 

! 
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distributions obtained by various means and degree of sophis

tication and difficulty can be used to determine population 

trends and the status of populations. Table 8 presents 

expected values of lambda for measures of the several para

meters of population change. 

Sample calculations of Lotka statistics The basis for 

use of the approximate method of calculating "r", the mean 

length of a generation, is in the unity of results obtained by 

the two methods. A sample calculation is found in Appendix C. 

A sample calculation of a stable age distribution, c. , is 
Lf X 

found in Appendix D. 
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Table 8. Expected values of lambda from estimates of survivor
ship, s, and mean expectation of life, e^, for time-

specific stable populations based on prediction 
equations 

Estimates of survivorship, TS Mean expectation Cohort 
of life population 

®1 A ®2 X 2% A ®3 A 

.42 .866 .30 .823 1.40 .841 .40 .861 

.43 .874 . 32 .836 1.42 .850 .42 .881 

.44 .883 .34 .849 1. 44 .860 .44 .902 

.45 . 892 .36 .862 1.46 .869 .46 .922 

.46 .901 .38 .874 1.48 .878 .48 .943 

.47 .909 .40 .887 1.50 .887 .50 .963 

.48 .918 .42 .900 1.52 .896 .52 .984 

.49 .927 .44 .913 1.54 .905 .53 .994 

.50 .936 .46 .926 1.56 .914 .54 1.005 

.51 .944 .48 .939 1.58 .924 .55 1.015 

.52 .953 .50 .952 1.60 .933 .56 1.025 

.53 .962 .52 .965 1.62 .942 .57 1.035 

.54 .971 .54 .977 1.64 .951 .58 1.046 

.55 .980 .56 .990 1.66 .960 .59 1.056 

.56 .988 .58 1.003 1.68 .969 .60 1.066 

.57 .997 .60 1.016 1.70 .978 .65 1.118 

.58 1.006 .62 1.029 1.75 1.001 .70 1.169 

®1 " mean rate of survival for first four classes of 1 time 

specific basis 

s_ = b value of regression of frequency on age of 1 
^ A 

Prediction equation for = Y = .4974 + .8766X 

Prediction equation for Sg = Y = .6297 + .6439X 

Prediction equation for e^ = Y = .2009 + .4574X 

So mean rate of survival for first four classes of 1 , Cohort 
J X 

basis 

Prediction equation for = Y = .4496 + 1.0276X 
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SIGNIFICANCE OF AGE DISTRIBUTIONS 

Bias in Basic Data 

The values obtained for estimates of population parameters 

in this study have been imprecise due to the effect of bias. 

Fertility data have had the greatest influence on results. 

This factor of bias has been influential in a consistent way 

and thus the error from this source can be considered a con

stant. Necessarily then, the specific value of lambda for a 

population must be considered in a partially subjective way, 

through a type of calibration by assigning an estimated value 

for error. The total error also has a component deriving 

from sampling and from aging errors. Of these, only sampling 

error contributes significantly to imprecision among the stable 

populations selected for study. This, too, can be assigned a 

value, again somewhat subjectively. 

Fertility error 

The age schedule of fertility should be completely age-

specific. The lack of sufficient sample size to obtain values 

for each age is a major factor of error. The suspected higher 

rate for 1-1/2 and 2-1/2 year old deer would have a significant 

effect on lambda. It is not expected that the adult rate would 

change more than a few hundredths up to perhaps .06. If its 

effect was felt in the large younger classes it would increase 

lambda markedly. Cole (1957) has said that the most 
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significant datum in the current human population explosion 

is not the number of children per family but the age of the 

parents at the time of the first born. A similar phenomenon 

is apparent here. 

Although the fertility schedule approaches by a few 

hundredths the expected true value for each category, it is 

known that considerable bias entered the study at the time of 

collection of the data. Embryo counts made from February 

through June of 19 67 increased substantially from very low for 

the first half of the study to improbably high for the latter 

half of the study. There appears to be a direct linear rela

tionship between the progression of the gestation period and 

the foetal counts. 

The fawn adult ratio of .810 resulting from these data 

is not high enough to maintain the population at current 

levels with the annual mortality rate the herd has sustained 

during the last decade. There is no evidence that the state

wide population has decreased statewide since 1959. Actually, 

the sustained increased kill would indicate considerable 

higher population now. A better estimate is needed so that 

the calculated lambda can be a more unbiased estimate of popu

lation change. 

Sampling error 

The effect of sampling error is to bias the probability 

of survival estimates. These estimates are tied directly to 
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the frequency of occurrence of the age-classes in the kill. 

The first effect on lambda is through the non-occurrence of 

some of the older age-classes which exist in the population but 

not in the sample. This technique of analysis demands a large 

sample size because of its dependency on the length of a 

generation. If "T", the mean length of a generation, is not 

based on the complete age-base of the population, an error of 

several hundredths occurs in lambda. 

Aging error 

A significant part of the aging error and its effect on 

lambda derives from the tendency to not assign ages beyond 

5-1/2 years. The criteria are not clear-cut enough beyond this 

age to develop a smooth distribution at this end of the age 

base (Ryel et al., 1960). It is estimated an error of as much 

as two to three hundredths is created in lambda due to this 

aging error. 

The populations chosen for stability generally do not 

exhibit irregularity between the 1-1/2 and 2-1/2 year classes. 

In some of the unacceptable distributions (non-stable or of 

small sample size), the 2-1/2 year class is sometimes larger 

than the 1-1/2 year class. The increased probability of 

survival that this invalid data produces in the calculation of 

lambda generates a larger value of lambda which is erroneous. 

This error can be as high as .10. 
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Characteristics of Iowa Survivorship Curves 

If all the above-mentioned sources of error were cor

rected, and there are techniques to permit the improvement of 

these data, there would still remain another source of error. 

Differential vulnerability between age classes exists in the 

general population under the management applied. There is 

strong evidence from the work of Anderson (19 53) that the 

rates change depending upon the portion of the population that 

is killed by the pressure applied. The level of exploitation 

thus alters relative vulnerabilities. 

In general, for the statewide populations for which 

survivorship curves have been presented (Figures 1 and 4), 

there are two distinct limbs to the curve. This reflects the 

difference between the relative vulnerability of the 2-1/2 and 

older females and the lesser vulnerability of the fawns, and 

1-1/2 year old females. These survival rates average .64 for 

the younger classes and .41 for the older classes, when calcu

lated on either a cohort or time specific basis. 

In the large 1966 sample, where the final ages were 

assigned by the author, (which in theory produced a distribu

tion free of aging error), the rate of survival declines more 

smoothly from about 59% to 32% between the fourth and fifth 

interval. There is still a major change at the beginning of 

the third interval which produces the distinct right and left 

limb of the curve. The same indication of a gradually 
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declining rate of survival between each age class is evident 

from inspection of the 8-year composite 1^ curve (Figure 1). 

The same major break also occurs there. The range of these 

data indicates the range of variability in the vulnerabilities 

of the classes expressed in rates of survival. 

This higher rate of mortality in older deer under condi

tions of a relatively high level of exploitation when compared 

to natural mortality, is the mechanism which produces the 

shorter age-base with increased exploitation. In Iowa, this 

shorter age-base developed after only three hunting seasons. 

It is postulated that compensatory reproduction occurred 

(Errington, 19 46) and within a few adaptive years the fertility 

rate had attained the magnitude reported in this study. The 

age-distributions have not changed markedly since about 1955 

(Larson, 1967d). Kline (1969) reports a composite frequency 

distribution for 1954-1962 which does not differ significantly 

from 19 67 data in the length of the age base or in the frequen

cy of occurrence of the classes. This tends to corroborate 

the relative stability of the statewide population during the 

period of this study. 

It appears that management efforts to reduce mortality so 

as not to permit mortality beyond recruitment has its principal 

effect, when successful, on the survival of fawns and one and 

a half year olds. The fluctuations in the relatively stable 

distributions of the last decade have occurrcd in these classes. 
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When the frequency drops from a 45-46% range to a 38-42% 

range, a significant reduction in mortality is believed to 

have taken place. These changes in frequencies of the first 

two classes through their effect on probabilities of survival 

create the range of values for lambda which occur in this 

study. Survivorship curves which are not statistically dif

ferent generate a wide range of values of lambda and net repro

ductive rate. The greater the difference between the slopes 

for the two limbs of the 1^ curve, the greater the value of 

lambda, at the level of exploitation of these populations. In 

the year following a year of reduced fawn frequencies the 

1-1/2 year class should increase. This fact tends to corrobo

rate the interpretation. Since more than 2/3 of the net re

productive rate derives from these classes it is crucial to 

monitor survivorship of these classes. 

Existing fertility schedules indicate a fawn adult ratio 

of .4475. "When it is assumed that the fawn class is the least 

vulnerable, it can be held that it should appear in a propor

tion less than this rate to insure adequate survivorship, i.e. 

survivorship which assures no population change as a minimum 

management objective. 

Successful management designed to reduce mortality will 

have the effect of elevating the left limb of the survivorship 

curve. In subsequent years at the same rates of mortality, 

these changes will alter the right limb of the curve. The 

small changes in management usually applied should not have 
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much immediate effect on the extremely vulnerable older 

classes. Management plans should take these phenomena into 

account. Drastic changes in management would be required to 

alter the nearly 60% mortality rate of the older classes in 

order to achieve a satisfactory change in net reproductive 

rate. 

It is believed that the phenomena reported by Anderson 

(1953), that the older classes occur at a somewhat higher rate 

in the natural population than in the sample, is quite 

probably true in the Iowa population. This probability adds 

one more source of error in the calculation of lambda if only 

the unaltered sample frequencies are used. Total error is 

reduced and acceptable accuracy is obtained if the sample 

frequencies are extended arbitrarily to give a longer age base 

which declines at the same rate as the right limb of the 

survivorship curve of the population. This technique adjusts 

for two types of sampling error; error in "T" and error in 

probabilities of survival of the older classes. 

Theory of Stable Age Distributions 

Interpretations 

Past interpretations of age-distributions of Iowa deer 

populations have been very sketchy. The conformity of the 

curves was interpreted to mean no significant change. The 

actual thought was that the population must be "stationary", 

that is, no change in numbers of deer was taking place from 
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year to year. As the thought and discussion considered the 

fact that the herd was sustaining increased mortality due to 

significant increases in authorized exploitation, the unchang

ing distributions became a disturbing inconsistency. It could 

not be that the populations were stationary. The seeming 

paradox prompted this study of the significance of age-distri

butions . 

Lotka's theory states, in part, that a population having 

a stable age-distribution will have a constant rate of increase 

(or decrease). This means that there is a specific rate which 

applies to specific age-distributions provided they are ap

proaching a stable condition, and provided reproductive rates 

are constant, as is assumed in this study. The theory further 

provides that populations will become stable at some future 

time when they exhibit constant age-schedules of birth-rates 

and death rates. In this instance, then, the statewide popula

tions over the period of study must have experienced a specific 

birth-rate, a specific death rate, and a relatively constant 

rate of increase or decrease, because the populations demon

strated a stable condition by one or more tests of stability. 

Because the eight years covered by the study are more 

than a generation, more than 99% of the 1959 population had 

been replaced by 1966. Therefore, the rate of increase for the 

state as a whole must have been very nearly zero (r = 0) at a 

minimum but could have been as high as ten percent per annum 
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under the near uniform mortality conditions prevailing. The 

factor of rate of increase, thus, depends upon unbiased age-

schedules of fertility and unbiased probabilities of survival 

exhibited by these populations. 

Estimates of lambda 

Only three populations had calculated estimates of lambda 

which were above 1.0, a stationary population. Approximately 

half or more of the populations should be above 1.0, if the 

statewide populations were to have no change as a minimum 

necessity to be compatible with the evidence that statewide 

populations have been stationary or increasing over the period 

of the study. For half of the estimates of lambda to be above 

1.0, an adjustment of .10 would be necessary. The suitablility 

of this adjustment factor for lambda will be discussed further 

under "Adjustment of lambda". 

Theoretical validity of calculations of "s", survival rate 

It is apparent that calculations of "s" based on any ratio 

between components of age-distributions are in conflict with 

Lotka's theory under most circumstances. 

A completely stable age distribution would have a value 

for "s" which would not change from year to year since the 

population has reached a stable age distribution. With identi

cal values of "s" from year to year, the population could be 

increasing, decreasing or stationary. If a different value 

for "s" was obtained following a period of stability, it could 
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reflect a changing birth rate (age-schedule of fertility), a 

changing mortality rate (a changing age schedule of survival) 

or a combination of both. The "s" value obtained would most 

likely reflect mostly a changing age-schedule of survival 

since most ratios between components in the distribution do 

not adequately reflect changes in the birth sequence. 

If reproductive rates changed or were variable from year 

to year due to environmental factors, and survival probabil

ities would thus be irregular, ratios between components of 

the distribution would be very erratic and reflect the changes 

in the birth sequence as well as survival deriving from mor

tality schedules. These conditions would preclude calculation 

of "r", because of a lack of a stable condition and a calcula

tion of "s" would be similarly unreliable for the same reasons. 

There is a lack of theoretical validity for use of estimates 

of "s", taken as ratios between components of age distributions, 

for estimates of the proportion of a population surviving, the 

survival rate. An example of an invalid relationship is found 

in Figure 14. 

If it can be safely assumed that birth rates are a con

stant factor, certain ratio techniques would have a certain 

validity. This is currently the case in Iowa as evidenced by 

the stable populations of Figure 1 and 4 and the age schedule 

of fertility, Table 3. 



www.manaraa.com

95 

Validity of "s" 

The complement of the average value of Q^, mortality rate 

of the life table, for the first four age classes, is an 

estimate of survival rate for that portion of the population 

or approximately 85% of the population. Sampling and aging 

error is minimized in this group and such a measure reflects 

the fortunes of this group in terms of survivors. It is also 

the younger components of exploited populations that determines 

the capacity of a population to increase, decrease or just 

maintain its numbers. The value obtained is not a precise 

estimate of the proportion of a herd surviving, however, it is 

a sensitive index to survival when reproductive rates are con

stant. It needs to be calibrated to recruitment values to 

become a precise estimate of survival. It is equal to the 

complement of the fawn frequency when that frequency is a 

good estimate of that component of population and when r = 0, 

Through use of a prediction table, such as Table 8, this 

estimate of survival rate can be a quick method of determining 

lambda for populations such as have been studied here. Simply 

determine the 1^ frequency for the population; plot the fourth 

value on the fourth ordinate of semi-log paper; draw a line 

from this point to the 1000 value on the first ordinate; and 

the point of intersection with the second ordinate is the 

estimate of "s", the slope of the line. This short cut method 

precludes completing a life table for Q values. 
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Values for survival based on formal regression methods of 

the total age distribution have a similar validity as "s", 

and assumptions prerequisite for their use identical for those 

of "s", just described. They have value as quantitative 

measures of the slope of the 1 curve but are not precise 

estimates of a proportion of a population surviving. Because 

of aging and sampling errors attendant with the older classes, 

the regression of 1^ frequency on age of the first four or 

five classes only should be calculated. A value nearly iden

tical to "s" above should be obtained. For that reason the 

calculation of slope by regression methods should be done by 

computer or the above short-cut method of obtaining slope 

should be used. 

If a proof is attempted by substitution in Lotka's 

formula, the results would show that such a ratio estimate of 

"s" would only be valid when r = 0. Some evidence would be 

needed that the population was stationary to validate such an 

estimate. With such evidence at hand, no estimate of "s" 

would be needed as it would have to be equal to the complement 

of the fawn D frequency. This would be a known value. 

Ratios between components of age distribution have two 

useful functions: one, to determine relative vulnerabilities, 

and two, they do represent a quantitative measure of a slope, 

the 1 survivorship curve. 
X 
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Under the conditions of this study, where an assumption 

of a constant fertility rate is made, based on some evidence, 

the rate of increase, Lotka's "r", is a function of the 

changing slopes between age-classes of the survivorship curve. 

There is a curvi-linear relationship between the slope and "r", 

and a linear relationship between the slope and lambda. 

It is believed that no one estimate such as a single ratio 

can describe the survivorship phenomena exhibited by an 1^ 

survivorship curve and thus, a single quantity denoting "a" 

survival rate, "s", is inappropriate. For the purpose of 

determining exploitation levels and the capacity of a herd to 

maintain itself, the survivorship curve can only be interpreted 

as a series of age-specific probabilities of survival in rela

tion to the age-specific production, which is precisely what 

the Lotka calculations do. 

Conflicting theoretical views 

The application of Lotka theory to deer population 

analysis has been utilized by Eberhardt (1960) with Michigan 

data. No other reference has been found in the literature 

although Cole (1957) has recommended its use in wildlife popu

lation analysis. 

Eberhardt's application of theory contains conflicts with 

the theoretical interpretations of this study. He determined 

survival rate by using Hayne and Eberhardt's (1952) ratio of 

1-1/2's and older to 2-1/2's and older= This is simply the 
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ratio of to Ig of the survivorship curve. He then dis

carded the real age-distribution and calculated an 1^ distri

bution based on a uniform decline in numbers for each age 

interval based on this estimate of "s". From this hypothetical 

survivorship distribution he calculated c^, (the c^ of this 

study), the stable age-distribution of the hypothetical prob

abilities of survival based on "s". The calculated "r" 

resulting from this is variously attributed to the hypothetical 

probabilities of survival (Table 24, p. 165, Eberhardt, 1960), 

and the calculated stable age-distribution (Table 25, p. 167 

and Figure 41, p. 166, Eberhardt, 1960). These three distribu

tions will give widely varying values of "r" with the two 

calculated distributions having no valid relationship to the 

real distribution (Figure 15) . 

Besides the failure to use real data, there is further 

confusion resulting from his assumptions for application of 

the 1^ distribution. On the subject of stable age distribu

tions, (p. 166, his study), and on the subject of survivorship 

curves (p. 175 and p. 177), he demonstrates a view of 

stationary populations, and life-table assumptions that is 

inconsistent with theory on these subjects. He states: 

"A curve for a stationary (r = 0) population is 
included for comparison, and, of course, only the 
stationary population is appropriately shown in the 
life-table form. However, the point here is that 
rather different age structures may develop from 
the same survival rates and be perpetuated as long 
as the survival and age-specific reproductive rates 
hold constant." 
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Figure 15. Comparison of range of survival rates, 1^ 

distribution, for females in Iowa, and for 
southern Michigan 

The Iowa 1964 curve represents a population 
declining by 5% per year and the 196 4 
population is one increasing by 10% per year. 
The "r" for southern Michigan is estimated 
at +.141 or an increase of 15% per annum. 
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Evidence that a population is relatively stationary, such 

as was determined by Tabor and Dasman (195 7) for blacktails, 

is evidence also that the population has a stable age-distribu-

tion. In that relatively rare case, the two situations oc

curred only because there was no more space for expansion of 

the population and socio-physiological factors prevented 

further growth of the population. This is also a special case 

where the Lotka calculations are said to be inapplicable 

(Andrewartha and Birch, 1954) because an assumption of expansion 

in unlimited space is required. This requirement could be open 

for question but is not an issue here and is not dealt with in 

any detail in this study. 

The interpretation in this study is that any 1^ frequency 

for cohort populations is proper in the life table form regard

less of the rate of growth of the population or its relative 

stability. To apply Lotka statistics to this population, only 

evidence that the distribution is essentially unchanged or 

would be unchanging for a length of a generation is required. 

This is evidence of a stable age distribution. Again, zero is 

only one of the many possible values of "r" found in the stable 

condition. With high levels of mortality, stability is evi

dent within 3 or 4 years. Recent evidence (Coale, 1968) 

indicates a more rapid adjustment under these conditions and a 

generation is therefore not required under Iowa conditions. 

Stability is the product of the birth sequence and death rates. 
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When both factors are high, as well as constant, irregularities 

are rapidly smoothed out and stability is the result in less 

than a generation for deer populations. 

Appropriate time-specific life tables can be constructed 

when the population is stable as is required for correct appli

cation of Lotka statistics. 

The second sentence of the Eberhardt quotation is like

wise inconsistent with theory. Nearly identical age structures 

will develop within one generation or less if survival and age-

specific reproductive rates hold constant. If only one of the 

rates changes, a different age structure will result. If both 

change, a still different age structure will result. The 

perpetuation of an age structure is the result of stability 

created by constant birth and death rates. When stability is 

reached, its form is maintained through the birth and death 

sequence (Coale, 1968); constant factors in this condition. 

Eberhardt may have meant that reproductive rate changes in 

one population will change the age structure of that population 

to a new and different stable form which will be perpetuated. 

To speak in terms of identical survival rates is misleading in 

this instance. Survival rates are expressed in the form of the 

1^ frequencies. If these are identical it may mean that birth 

and death rates are identical and the curves for these two 

populations would be the same and not different. A practical 

example of the situation to which he possibly refers would be 

when two populations, having identical stable age structures, 
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continue to have identical mortality rates but develop differ

ent birth rates. In this instance new, different stable age 

structures would develop for each population within less than 

a generation. 

Violation of assumptions 

The Lotka theory has not had wide application in wildlife 

population ecology. Besides the requirement that the popula

tion under analysis be increasing in unlimited space, the 

requirements that it be stable with a constant birth and death 

rate suggests to the wildlife biologist that such conditions 

rarely exist in natural populations whether exploited or not. 

Actually, these requirements refer to the validity of a 

calculation for the intrinsic rate of natural increase, "r", 

of a stable population. For purposes of population analysis, 

it is believed that these requirements and assumptions can be 

modified or violated to provide a useful technique applicable 

under widely varying conditions. In this study, it is 

believed that the results are no more variable than the 

original data would be under the best of conditions. 

The requirement of the theory that the population have a 

stable-age distribution has apparently led Eberhardt to sub

stitute the calculated "r" of the stable distribution for the 

"r" of the real distribution. The lack of suitable and 

available data prompted the construction of hypothetical 

survivorship curves. It seems evident that this distribution 
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is twice removed from reality. It reflects only a distribution 

that would eventually result if differential vulnerability did 

not exist, fertility rates held constant, and all classes 

continued to survive at the same rate. 

Stable age-distributions have been plotted along with 

real distributions in Figures 1 and 4, of this study. Since 

many of the calculated values of "r" were negative quantities, 

the plot of the stable distributions fall mostly below the real 

distribution. The value of calculating the stable age-distri-

bution lies primarily in forecasting what existing birth rates 

and death rates will do with the population. For example, if 

a stable distribution lies below the real distribution and the 

r is negative for the real distribution already, and birth 

rates are relatively constant, the interpretation should be 

this; the population will decline until the new stable dis

tribution is reached, the "r" will change in the negative 

range and when the new stable distribution is reached, the "r" 

will remain constant at a negative value while the population 

continues to disappear. This is believed to be the mechanism 

of the declining populations observed in Iowa. 

Status of Populations 

The state has been divided in the past by several manage

ment plans. Prior to 196 3, there were no zones for management. 

From 1963 until 1966, management plans included two zones which 
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differed each year. In 1967, six zones were created (Figure 

16). Mustard (1963) divided the state into four ecologically 

dissimilar regions (Figure 17). 

Only zones in which stable populations have been demon

strated during some of the years of study will be discussed in 

terms of population change. Data have been generally in

adequate for sample size for the smaller subdivisions. 

Prior to this time, the status of populations was deter

mined largely from kill data as demonstrated in Figures 18 

through 23, inclusive. 

Regional divisions 

Region one—northeastern Data are really inadequate 

to assess this population. Only two stable distributions can 

be illustrated in Figure 24a. Figure 24b traces the trend in 

lambda. This population probably possesses the highest rate 

of increase in the state. A noticeably greater supply of 

older deer is evident. It is possible that this area could 

have a lower fertility rate. The true lambda (rate of popula

tion change) would be lower than the calculated one in that 

event. If the suggested adjustment of .10 + .02 were made in 

lambda a rate of increase would result which could not be 

justified by field observations. Better data on survival and 

fertility are essential to manage this population. 



www.manaraa.com

Figure 15. Iowa deer management zones, 1967 
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Figure 17. Primary deer regions of Iowa, ecological basis 
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Figure 18. Data from deer management zone 1, 1960-66 

The kill (bottom line) is contrasted with 
the number of hunters (top line) and the 
miscellaneous non-hunting mortality. 
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Figure 19. Data fiunt deer manageiricnt zone 2, 1960-65 

The kill (bottom line) is contrasted with 
the number of hunters (top line) and the 
miscellaneous non-hunting mortality. 



www.manaraa.com

113 

200 

100 

Misc. 
Mort. 

HUNTER SUCCESS RATE 

40% 51% 43% 47% 45% 39% 43% 
4000 

3000 

2000 

HUNTERS 
PERMIT 
KILL 

1000 

I960 1961 1962 1963 1964 1965 1966 



www.manaraa.com

Figure 20. Data from deer management zone 3, 1960-66 

The kill (bottom line) is contrasted with 
the number of hunters (top line) and the 
miscellaneous non-hunting mortality. 
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Figure 21. Data from deer management zone 4, 1960-66 

The kill (bottom line) is contrasted with 
the number of hunters (top line) and the 
miscellaneous non-hunting mortality. 
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Figure 22. Data from deer management zone 5, 1960-66 

The kill (bottom line) is contrasted with 
the number of hunters (top line) and the 
miscellaneous non-hunting mortality. 
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Figure 23. Data from deer management zone 6, 1960-65 

The kill (bottom line) is contrasted with 
the number of hunters (top line) and the 
miscellaneous non-hunting mortality. 
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Figure 24a. Survivorship (1^) curves for stable, time-

specific populations of region one with 
associated estimates of lambda compared 
with a slope for no population change and 
the unstablizad 1966 population 
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Figure 24b. Trends in population change for region one, 
north-eastern Iowa, as expressed by 
estimates of lambda 
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Region two—northern prairie This population probably 

declined from 1962 until 1964 and then increased about 5% per 

year in 1965 and 1966. All the curves in Figure 25a represent 

stable populations with only the 1960 data inadequate. Figure 

25b illustrates the changes in lambda during the decline and 

reestablishment. The adjustment of .10 + .02 is considered 

appropriate here. 

Region three—western hills Only two populations were 

found to be stable (Figure 26a) although five are presented. 

This is an illustration of aging and sampling error making 

stability impossible to assess. This relatively under-

exploited population has probably always been increasing. The 

adjustment factor is also appropriate here. Although irregu

larity exists the lambda's (Figure 26b) are nearly proportional. 

Region four--southern The 196 6 data indicate that this 

population has increased in numbers with an increase of 5-7%. 

Only the 1962 data indicates an increase as well (Figure 27a 

and b). The comparison of these curves illustrates the 

necessity for the collection of jawbones for accurate data and 

to be used with Lotka statistics. The 1966 curve is smooth, 

as expected, from accurate aging and large sample size. 
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Figure 25a. Survivorship (1^) curves for stable, time-

specific populations of region two with 
associated estimates of lambda 
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Figure 25b. Trends in population change for region two, 
northern prairie, as expressed by estimates 
of lambda 
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Figure 26a. Survivorship (1^) curves for time-specific 

populations of region three for 1963 and 
1966 with stability compared with unstable 
populations 

Estimates for lambda are indicated. 
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Figure 26b. Trends in population change for region 
three, western Iowa, as expressed by 
estimates of lambda 
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Figure 27a. Survivorship (1^) curves for stable, time-

specific populations of region four, southern 
Iowa, with estimates of lambda 
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Figure 27b. Trends in population change for region four, 
southern Iowa, as expressed by estimates of 
lambda 
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Zonal divisions 

Zone one—northern prairie This zone is composed of a 

different subdivision of counties than that termed northern 

prairie under Region two. It is smaller and represents only 

north-central agricultural land. These plots (Figure 28a and 

b) show a possible small decline in 1961 and 1962 with approxi

mately a 5% annual increase from 1963 to 1966. 

The effect on the distribution for 1963 of curtailment of 

permits and a shorter season is quite obvious. The population 

accumulated some older deer and increased approximately 5%. 

Zone two—long zone The rate of increase of this 

primary population representing approximately 85% of the state

wide population began to decline in 1961 and in 1963 a small 

reduction in total numbers is apparent. In 1964, the data 

indicate about a 10% decline in numbers. The dcclinc was 

short with 1965 and 1966 showing 4-6% increases in numbers. 

The 1966 data are better and indicate about 4% annual increase 

possible. Data plots are in Figure 29a and b. 

Six zone plan 

This plan was adopted for 196 7 and data have been pro

cessed in this way but only the northern prairie zone exhibited 

stable populations and adequate sample size. This plan was 

adopted partially to protect the fourth zone, the east central 

river breaks area. The results of protection are not available 
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Figure 28a. Survivorship (1^) curves for stable, time-

specific populations of zone one, northern 
prairie, with estimates of lambda 
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Figure 28b. Trends in population change for zone one, 
northern prairie, as expressed by estimates 
of lambda 
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Figure 29a. Survivorship (1^) curves for stable, time-

specific populations of zone two, southern 
Iowa, with estimates of lambda 
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Figure 29b. Trends in population change for zone two, 
southern Iowa, as expressed by estimates 
of lambda 
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from this study. The lack of adequate data would indicate 

extremely low numbers of deer in this large area during the 

whole eight year period. 

General 

Although the Lotka analysis did reveal nearly every 

population was declining, the bias's in the data may not 

justify such a large adjustment factor as .10 + .02 to be 

added to these results. This is an unacceptably subjective 

judgment. It is apparent that to harvest female deer at a 

rate so close to recruitment is folly. 

Sex specific trends 

The trends in buck populations, statewide are plotted in 

Figure 30, for time specific analysis. Figure 31 illustrates 

the trend in female population changes, statewide and time 

specific, and Figure 32 illustrates results of age-specific 

analysis. 

Male population changes were in opposing directions from 

1960-1963. The male population was increasing while the female 

population was decreasing. There was a sharp decline in both 

populations in 19 64 of about 5%. They both recovered and in 

1965 and 1966 both populations were gaining from 1-4% annually. 
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Figure 30, Trends in population change for stable, time-
specific populations of males, statewide, as 
expressed by lambda 
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Figure 31. Trends in population change for stable, time-
specific populations, female, statewide, as 
expressed by lambda 
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Figure 32. Trends in population change for stable, age-
specific populations, female, statewide, as 
expressed by lambda 
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RECOMMENDATIONS 

The management of white-tailed deer for either control of 

the species or the perpetuation of breeding stock for hunting 

purposes has been practiced without a sound scientific base in 

theory. As has been shown, most management practices either 

have no scientific basis with the trial and error method of 

determining allowable kill being used or are in conflict with 

accepted and existing population theory such as Lotka's theory 

of stable age-distributions. Iowa has been exploiting the 

white-tailed deer population to its limit of productivity 

(Nixon, 1958) , and must utilize the most sophisticated tech

niques available to assure the prevention of an over-harvest. 

It is believed that the results of this study show that tech

niques employed have not been sufficiently precise to 

measure the proportion harvested. 

It is believed appropriate that the following steps be 

taken in order that management be based on existing knowledge. 

1. Population analysis techniques based on Lotka's theory 

of stable age-distributions be applied in the management of 

Iowa deer herds; i.e., that the intrinsic rate of natural 

increase, r, and the anti-logarithm of r, lambda, be the basis 

for expressing level of exploitation. 

2. In order to implement the above analysis technique, 

sampling and systematic bias must be removed in the collection 

of data which are used to determine 1^, (the probability of 
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survival to age x), and m^, (the age-specific schedule of 

fertility). 

3. The trend of herd reduction through hunting as 

revealed by this study, must be reversed. 

4. Because extensive data are required and the analysis 

is tedious, computer analysis should be the method of choice 

in the processing of deer data for management purposes. 

Implementation 

There is seldom a difference in objective between biol

ogists and others responsible for managing game species. How

ever, disagreement frequently develops as to how best to 

achieve objectives. Because the biologist who is most 

intimately involved frequently has the best insight into the 

effect of specific management proposals, it is suggested that 

the following points be considered to best achieve objectives 

listed in the above recommendations. 

1. It is quite apparent that the kill levels of the 

years up to 1966 are too great in much of Iowa. To be consist

ent with a prime obligation to provide hunting opportunity, it 

would be best to reduce the kill of antlerless deer only. As 

the female component is the key to maintenance of a population, 

it is thought to be the best of alternatives to increase the 

probabilities of survival of this component. Because complete 

preservation is neither possible or desirable, it is recom

mended that the kill of antlerless deer bo controlled by 
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permitting the taking of them by every third, fourth, or 

fifth permit holder. The frequency of antlerless deer permits 

would depend on the status of the population in the various 

management zones. A small change in the 1^ of the fawn and 

1-1/2 year class would cause populations in all zones to in

crease. The result would be more females, young, and yearling 

bucks which in Iowa are frequently prized 6 to 8 pointers. 

Many more total permits could be authorized under this system 

and thus provide greater hunting opportunity as well as make 

maximum use of the resource. A satisfactorily accurate fore

cast could be made by running the available computer programs 

with expected 1^ values to determine effect of various rates 

of issueing antlerless deer permits. Any desired level of 

increase could be obtained through precalculation. 

2. The best way to remove sampling bias from the 1^ 

probability data would be a mandatory check by biologists of 

all antlerless deer rather than just a sample of them. This 

is recommended for at least the first year. Age data from 

female deer could be taken at locker plants during the season 

of implementation and compared with data from the mandatory 

check. 

Locker checks for antlered deer should be continued as 

increased hunting pressure on this component will reduce its 

age base even further than at present. Ultimately, it is the 

hunter satisfaction with success here that will determine the 

number of permits that can be authorized in total. Increased 
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efforts should be expended in areas of lower deer population 

and the statewide sample should be assembled by stratification 

on a pro-rata basis to the kill in each zone. 

The principal systematic bias in the 1^ probabilities 

lies in the execution of the Severinghaus aging technique. 

The present alternative is the dental annuli technique which 

is currently in use in all parts of Minnesota and Wisconsin. 

It is considered valid and appropriate but depends on a pain

staking execution of the histo-technique involved. It is 

recommended that research be renewed to test and to implement 

this technique for aging deer in Iowa. 

3. The efficiency of data collection and the validity of 

data on county of kill could be much improved. It is recom

mended that a pre-numbered tag be provided as an integral part 

of the license which the hunter is required to affix to the 

head when delivering to a locker plant. The hunter would 

enter the name of the county of kill and his own name. The 

sample size has been greatly reduced per unit effort in the 

past by lack of identification of heads in locker plants. 

Also, locker personnel introduce additional bias by varying 

policies on carcass handling, especially head removal. 

4. Data used in this study to obtain an estimate of m^, 

the age-schedule of fertility, were seriously biased at its 

point of collection. Evidence of bias is apparent when the 

foetal counts increase significantly as the gestation period 
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progresses. Further, it is inadequate due to sample size 

which permitted only a schedule of two age classes, fawn and 

adult, to be assembled. An m^ value should be obtained for 

each age class that will appear in the population sample. 

It is suggested that it is possible to reduce this bias 

by having all road-killed female deer dying between March 1 

and June 1 brought to a biology field station for examination. 

Data collected by other than professionally trained personnel 

is not suitable, or likely to produce acceptable estimates of 

fertility in Iowa deer herds. 
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APPENDIX A. COMPUTER PROGRAMS 
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'=SEX(M,F,-OMl ) 

OÎM-^SION X ( 1. 1 > , iT ( P , YY(li),R(2,31 
rTM-\isn\' , NM2( R, 3) , SFXl {" > . SFX2 (2 ) T SEX 3 (2 ) 
nr^---K T A(^,T1.S(q, (*,-).^^(3.3,^1.R3( 9,2) 
{ M TC - :D W 

X /T . O ,  ?. ,6..7. ,A. ,o. 

?-A"il.l03t)S-%T,SFX-,S = XT.S^A3 

rn? 'AT( 7 n 3 & / -^ 244) 
en \T (7^6 ) 

=Ff3(l.'0n=1^ïTLA3 

-E'V' ' ,303' M y , MV qq 
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: NWP 

EMWR 
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c =NWR 7-2 
[ nUTPyT ENdR 74 
(3 ENWR 76 

WCITE(T,?00D1 W ,TANAP 
2000 cnRM4T('l OUTPUT POP YEAR',15,' FOLLOWS IN ORDER OF ZONES 

1 FIT! THF TFPEE SEX S DU» S, US I N" ANALYSIS oLAN',TS,* FOR ÎX'//) 
r.  FMW3 PI 

DO ?0 J=",N7 
WRITE (1, 7031 )J,OATLAB 

3001 FnRM&Tf'g',63X,' 70NC «,1? //3?A4/) 
r EN-JR. 85 

WQ TT C(3,?00? ISPXI, A(J,11,S(J,1),SL(J,1,?),BL(J,1,11,STAR,BP(J,1,1) ENWR 87 
1,3R(j,l,?),S(J,I),NV?(J,l),T(J,l),RR(J,11,SEX2,A(J,?),B(j,2), EPjV'R 98 
1RL(J,2,7), 
2RL(J,?,T1,^TAQ,%P(J,2,I1,RR(J,2,7),S(J,21,NM2(J,2»,T(J,2), RR(J,2)ENWR 89 
1,SFX3, 
3a(J,3),R(J,?),BL(J,^,21,3L(J,3,11, STAR,RR( J ,lî ,RR(J,^,2t,S(J,3), ENWR 90 
4NM2( .j , 3 ) { J,3 ) ,P.R {J, 3 ) ENWR m 

R88B FnRMAT(315,3F10.4) ^ 
m y I <=1,3 
pr J,K)=1 0,0*~3{ J,K ) 
n 71 L=i,? 
RL(J.K,L)=10.0**OL(J,<,H 

71 9R(J,K,L)-l0.3**PD(j,K,L1 
WPTTl(T,9qRq)T&N&o.W,j , 
WRTrc(3,?0T0)(P(J,M),%L(J,%,?),BL(J,q,l),<TA9,PP(J,M,l),%R(J,^,?1, 

iv = i ,3) 
-70-10 c0R"AT('0'//10X,'TqANSF03WF0 P VALUES AND C . I . • / 3 ( 1 OX , ̂ F1 ? , i , A'-, 

22=12.4/)) 
^0 CONTINUE 

C ENWR 92 
2002 F 0RMAT(3 (2 A4,F10.3 ,2X , F1 0 ,2F1 D . 3 , 1< , A4, 3F10.3,4X, Î2, f.X, F10.3, ENWR 9? 

1FIO.4/n 
no uo K^l ,3 
'^0 40 J%=1 , ° 

6.0 TT(J,'<)=0 
on 41 J=1 ,1 0 
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6 6  t i M N d  X ( . ; S S / X A S S - c S S  J  

8 6  b M N d  (  î - i M )  / I  A 3 Û S S  )  = X A S S  J  

/ . 6  W M N d  J  

0 2 1  b M N B  A X u S * b - A U S S  = A  3  ( J i > S  J  

6 1 1  h M N  3  y x * â - y  A = v  3  

f a l l  y  M M  3  X C j S S / A X G S ^ t : 3 i r i o r t C j  3  

Lll b M N 3  J  

9 1 1  b M N  i  (  à  A —  t i ) A l ^ i i d X — l i ) X )  + A X u  S  =  A  X u  1 »  c 

y  i l  h M N 5  i l  b A  ~ l l  ) A ) ^ i  d A  —  1  1  )  A  ) + A t j S S  =  A G  S  b  

^ 7 l l  t M N 3  i y X - ( l ) X ) ^ ( y X - t I ) X ) + X G S S = X L S S  

E l l  h M h  3  N  *  i - 1  c  O u  

2 Ï T  a M N 3  J  

I I I  b M N a  i h Q I I V l A 3 ( J  Q d a V n D i »  S  d x f i a w ù D  J  

C I T  G ' C ^ A X O S  

6 0 1  b f N 3  N / A w r i s = y A  

B O l  h  M  N  3  N / x w n s = t i X  

LOT y M N â  0 *  0  =  A G  b S  

9 0 1  d M N 3  (  1  ) A 4 A k n s = A w n s  l 

9 0 1  y M N 3  (  i )  x + x w n s  =  x a n s  

t c i  y M N 3  k * l = i  I  L Q  

£ 0 1  h M N 3  0  * o = A w n s  

2 0 1  a « N 2  C *  0  =  X r . n i  

T C I  y  M N i 3  0 ' 0 = X L L S  

G O T  y M N 3  • a v 9 A ' b V f c i x  '  A  w n s  *  X  ^ n b  J  

6 6  b M N  3  3  

C E I  % P N 3  /CS2"E*ySc'Ei66t 'E*Z0A'E*2E0'?* t09 ' t * I td 'S*S26'6  * / .b9  
o 2 I  h M N 3  * 2 9 2  * 2  * 9  0 £  * 2  * S 9 E  * 2  * I Z â * 2 ' 9 i L ^ * 2 * 2 b i - e '  t G E ' 9 * 9 U Z  • 2 1 / J L t l t U  

1 2  * o  ) x  *  l  N )  A  M i v j )  X  N 0 I b N 3 w i ù  

Lb a M N 3  ( <dd * S* Aaass ' V * 6yâ * bad ' b la * ^ lû * S *N * A*x ) t:db 3n  i x n c o y n s  

d U i S  0  l E  

9 6  y K i M 3  3  

5 6  %MN3 J 

V 6  y  M N  3  J 
lOE ÙJL o u  v O E  

inNIilMOJ Ol 
0  * 0  = (  r  )  A A  1*7 
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c 
r 
r 
r. 

c 
c 
r 

c 

SP=SQRT(SS B ) 
S=B/SB THE T  TEST STAT FOR H;  R=0 

BL5,PL9,PP5,RR9=B+-T*SB WHERE T  HAS N-2  1 .  F  

NJM 2=N-9 
T5=T(NV2,1)  
TP=T(MM?) 

T5 
C5 

R=soxy/sso* 

SSnEV=S5DY-P*S^yY 

SSYX=SSnEV/Nw? 
SSP=SSYX/SSDX 
S%=SqRT(SS8) 
S=B/S9 

BL 5=P-T5*CP 
BPS=B+T5*SB 
ALQ=Q_TQA SB 
PQ Q- A +Ta*^3 

00-%*5nxY/SSn/ 

CMH 

AMH T-Q AR 'r THE T  A31IL  A? T  VALUES F3R 
AND 99  ?  C, .  Î .  WITH (N-?)  O.F .  

ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
ENW3 
ENWR 
ENWR 
ENWR 
ENWR 
ENWR 
EMWR 
PMWR 

1 00 
101 
102 
103 
104 
Î  05  
106 
107 
108 
109 
1 1 0  
111 
1 1 2  
113 
114 
115 
115 
117 
11B 
1 1  Q  

120 
1 2 1  
122 
123 
1  24  

ENWR 125  
ENWR 125 
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C PATIOS ORORPAM 
C 

DIMENSION X(10)  ,CLLM(51 ,  RAT(8  ,4 ,31 , IFR(P) ,Z(9 ,3 )  
HATA IYR/195Q,1960,1961,  1962,  1^63 ,  1964,1965,1966 /  

C 
C RUM( ] )=ALL 0EFR,CUM{2)=ALL ADULT,CJM(3  1=2 1 /2  K OLDER 
C 
c CUM (4  > = 3 1/2 C HLHER , C.UM( 5 »=4 1/2 K OLDER 
C 

500 1 ,100)  LANAP.WZ 
ON 50  1=1,P 
00  50  J =7,4  
NO 50  K= •> ,  3 

50  RAT{ I , J ,K )=0 .0  
100 FORMAT;215> 

IF { IAMAP)?3?,  33? ,  5  
F CONTINUE 
00 20 J=ltN7 
NO 20  K=L,3  
WRITE C3 234) 

1234 FORMAT('1') 
f^n IY=1,P 
PEAD(1,101)  X 
WRITE(3 ,102) (X(LL) ,LL=1,10)  

102 POP"AT(' «,10F12.?) 
SUM= 0 .  0  

nn 13 1=1,10 
10 SU"=SUY+X(T) 

ruv(i)=suM 
r'j«{? )=suM-x (1 ) 
C UM(^)=CUM(?) -X(?)  
RUM(4»=CUM(3) -X{^ )  
CU^(S)=CUM(4) -X)  

r 
r 

PAT(iY,i,?)=rj^(2)/ru^(i) 
n4T(IY,l ,3)-OAT(%Y,i,2) 
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LF(CAM(?) ,EO.0 .01  GO TO 30  
RAT(  I  Y»1 » Î  )  =X( I  )  /R.UMC? )  
RAT(IY,2,2)=rUW(?)/CUy(?) 
R4T( IY,3 ,2)  =  rJM(4 >/C'JM (21  
9&T( IY ,4 ,21=CUM(5 1  /CU'M2 )  
PAT( IY ,2 ,^ )=  C  UM( /RUM(  21  
IF  )  .  EC.3  .0  1  GO TO 30  
P4T( IY ,2 ,11=X(2) /CUM(31 
RAT(  lY,  3,  3  1 = CLIM( 4) /CUY (3 )  
TF{RUMF4) .EO.0 .01CO TO 30  
OA R( IY?3,11=X(^ )  /CUM (41  
RAT( IY ,4 ,31=RJM(S1/CUY(61 
1=(CUM(5) .FO.0 .01  NO TO 33  
RAT(  IY,4,  11=X(  41  /CUM(  51  

•=0  CONTINUE 
DO 40  TY=1 VR 
00  40  IT=1,3  
ZZ=0.0  
NN RO TN=I  ,4  

«0  ZZ=Z7+%AT( IY , I ^ , IT )  
60  Z( IY , IT1=ZZ*0 .25  

101 FORM/VTD OFP.OI 

TABLES AND CARO O'JTOUT 

200 F0RMAT(3 I  5 /12F 8 F Q .6 / )  )  
WPITE(? ,?00) IANAP,J ,< , ( ( (3AT( I ,L ,WU, I=L ,P1,L=L,41 ,V=L,31  
WRITE(3 ,103) IANAP,J ,K , ( ( IYR( I1 , (RAT( I ,L ,M1 ,L  =  1 ,4  1 ,  Z ( I ,% 1 ,1  =  1 ,81 ,  

iw=1,31 
103 FORMAT( '0 ' ,20X, 'DESRRTDTION OF POPULAT INM:  AM.PI  AN ' , I  2 ,  '  ZONE' ,12 , '  

1  SFX ' , I2 / / /10X,  •  
1YFÛR' ,  5X,  'FAMM/AHULT ' ,  5X,  '  1  T/2  /2  1 /2  F,  OLDER' ,5X,«?  1 /2  /3  1 /2  G 
?  0L1ER* ,5X, '=  1 /2  /4  1 /2  £ OLDER' /8 {  9  X ,  I  5 ,  ,  F ]  0  .  6,  8X ,  ̂ 1  0 .  6 ,  1  6  X,  
3F10.6 ,16X,F10.6 ,OX,CI0 .6 /1 / / /  
4  / /LOX,  "YEAR « ,5X, 'ADULTS/TOTAL DEER' ,5X, '2  1 /  
6?  & F^LDER/APULTS'  , ^X  ,«  3  1 /2  i\ OLOER/ADULT S ' ,  5  X ,  • 4  1 /2  T.  DLOER/AOUL 
5TS ' /« (  QX,T5,FY,P10.6 ,14X,F=10.6 ,14X,F10.  6 ,14X,P10.6T<3X,F10.S/1 / /  
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«5 ///lOX, 'Y 
LE&R',5X, ' 4DULTS/TNT&L DEER' ,SX,"2 1/2& OLDER/ADULTS* , 5 X 3  1 / 2 S  OL 
LDER/2 1/2& 0LDEP',5X,'4 1/2& OL^E^/? 1/2& 0LDER'/8(9X,I5,6X,F10.6, 
114X,F10.6,14X,F10.6,17X,F10.6,9X,F13.6/),'1'1 

20 CONTINUE 
GO TO SOO 

333 STOP 
END 

- J  
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PRHTRAM TO PLOT •B '  VALUES 

DIMENSION FX(6 ,? ,8 ) ,X(8) ,Y(«) ,NZ(0) ,DATL(  S) ,DATLA8(6 ,3 ,5 ) ,XL(5) ,  
1YL(5) ,1L(  

R EA0(  1 ,  107)XL,YL 
10? ^PRMAT (10 A6-) 

REACK 1 ,10" "  )  (  (  (DATLABD ,  J,K1 ,«=1 , ^ )  ,J=1 ,3  1 ,1  =  1 ,6 )  
111 FORMAT(5(L=A4/ ) ,15A41 

F H R  ANY APLAN THERE A R E  U'P T1  6  ZONES,?  SEX GROUPS AND 

A YEARS HF FX VALUES-

TATA X /195P.  0 ,1°6  0 .  0 ,1  961.  0 ,1  962,  0 ,1  96?.  0 ,1  <5 64 .  0 ,196  5 .  0 ,1  965.  0 / ,W 7 
1 /6 ,2 ,  2 ,  2 ,  2 ,0 ,4 ,  3 ,1 /  

ON 1  000 7 AWAP =  3 , 9  
IF  {  1  ANAP.FQ.  6 .  OR.  T ANAP.  EO.  P> GO TO 1000 
PEAO(  1 ,  10?)GL 
J7 .=NZ( IAMAP)  

N I  10  LL=1.R 
LY=9-LL  
no 10 j="i,jz 

10 PFAN(L ,100) (FX(J ,K ,LY) ,K=L,3)  
100 cnpw%T(i5X,?F10.0) 

NO 20  1=1.J7  
ON 7  3  J=1  ,3  

NN IT? K=1,R 
15  Y(K)=FX{ I ,J ,K)  

NN 16  K=L,  5  
16  NATL(K)=NATLAB(T,J ,K)  

XS5=5.s 
CALL GPADM(P,X,Y,J ,20 ,XSS,6 .0 ,0 .00 ,0 .0 ,0 .20 ,0 .0 ,XL,YL,R-L ,DATL)  
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?0 WRITÇ(1 ,  ?00) IANAP,T,J 
200 cpRMATt'O PLOT FOP &P',I2,' ZONE' ,12,* SEX' ,12, • EXECUTED' )  

C 
c 
c 
c 
c 

1000 CONTINUE 
STOP 
FNO 

M 
-J 
(Ti 
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S T M U L A T F D  H U N T  PROGRAM 

DIMENSION ÏCKM (  15) ,  IR,<F< IS )  ,MPHS{  1  ,  MH S (  1  5  )  ,  JC KM(  15  )  ,  JCKF (1  5)  
N I  WPNSION AA(41 ,SSY(S) ,  SS3 (5  1 ,109(1^)  
INTEGER RFC(L=1,AF9(15T,FFHS(15) ,AS( I5 )  
DATA ICKM,  ICKF.PFC,  AFS,MFHS,MHS,A<; ,JCKM,  JCKF,FFHS/150-0 /  
DATA AA/O.P,0 .85 ,0 .Q,0 .95 / ,SSY/ ] .45 , ] .50 ,0 .55 ,0 .6 ,0 .65 ,0 .7 / ,SS3/  

10 .  35 ,  O.&O,  0 .A5,  0 .  50 ,0 .  5  5 / ,  I  PP/ I I  80  ,109  5 ,  985 ,898 ,490 ,190,75 ,40  ,25 ,  
215 ,7 ,0 ,0 ,0 ,0 /  

INPUT PARAMETERS 

INPUT IMITTAL POPULATIONS*  FQUAL NO.  OF M AND F .  )  

A I=1 .84  
FT=1 .22  

I  A=4 
A=AA( IA)  
I  NIT=S 
on 1 ISSY-INTT,6 
SYM=SSY(  ISSY Î  
syc^SYM 
S1M= SYM 
S 7 «^=r S Y M 
T 
ON 1  ISS3=TNN,= 
S?^=SS3(TSS ~)  

SM=0.5*SYM 
S»==SM 

N.N 4  1=1,15  
ICKM( T )= IDD(I Ï 
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A ICK F(  T 1= ICKMI  T 1  
C 

WRTTF(3 ,301 1A,F I ,A I ,SFM,SLW,S?M,SFF,SLF,S3F,SM,SF,  IC<M,  TCXF 
301  FNRW&T( 'L ' ,10X, 'PA%AWCTERS FOR THIS RUN:A= ' ,F5 .2 , '  IF  =  ' ,F5 .2 , '  1  A =  

L ' ,F5 .2 , '  SYM,  S1M,5  3W' ,3F6.? , '  SYF,  S IF ,  S3F » ,  ?P 6 .  2 /31X,  '  SM =  » , -6 .3 , '  
25== '  ,F4 .3 / /40X, '  IN IT I  AL POPUL AT I  ONS » ^  2  (  LOX ,  1  5  ̂ 5  /  )  )  

r 
r 
r CDKDIJTF PTHEP COLUMNS 

31 LL = l,Tf 
r 

r 
9FC(1)= ICKF(T)*F I  

FE DO 7  1=2,15  
RCC( T ) =ICKF(I )*6I 

8 AFS(l)=ICKF(1)*SYF*1.3476 ÎZÎ 
9 AFSf ?) =ICKF(2)-S1F^1..0475 ™ 

10 AFS(3  1= ICKF(?1*S1F*1 .0676 

11 O'L 12 1=4,1 = 
12  AFS(T)= ICKF(T)*<3F*1 .0&76 

13 NR 1 T =1 •= 
14 VFHS(I)=?=r(T)*sY*o.c5?4 
15 FCHS(I)=PFC(?1*<F*1.34^6 

16 MH<(1)=ICKW(1)*SYW*0.9574 
1 7  M H S = 5 2 4  
13 MH<(31=ICKM(7 1*Slw*0.q524 

19 OP 20 1=4,1^ 
20 %HStI)=lCKM(T)*q?M*o.3 = 94 

21 nn 22 T=l,l= 
9? AS(T1=&*fAFS(I)+wws(T1) 
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r SUM FAWN SURVIVORS 
r 
r 

23 SFM=0.0  
SFF=0.0 

C 
2^  NN 7-F 1=1 ,15  
?6 SFW=SFq+MFHS(I) 

SFF=SFF +  FFH5<T1 
C 

2« JCKML 1 )  =SF 0 .  9*^?A 
JCKF(1)=SFF*A*i.0476 

C 
- 'O N-N 33  1=2, IF  
•=1 1*1=7-1 
32 JCKMF 
3^  JCKF(T1=A<(1*1**0 .5*1 .0476 

C 
C nUTPU^ 
C 
c 

200 FHPMAT (371,1515/15 15.1%) 
WR T TF  (  2 , '00)  I  A , I  SSY,T SS^ ,  JCK^.  JR KF ,  LL 
MNJ=T e: 
NR 55  1=1,15  
T=( IC<F(11 .=P.N.AMN.J2KF( I ) .F0 .013N TO =2 
no Tn 5S 

52 NN'  =  I  -1  
Gn T? 

55 CNKFTJMLJC 
=^6 Cn^TTN'JÇ 

WQITF (  3 ,  31  01  
•^10  FDPMAT (»  0 ' ,25X,  •  S TMUL AT FO HLF\ !T  TABLE»/ / )  

NN F,N i  =I  ,  nn 
60 W9TTC(3 ,^17) (TCKM(T) ,T :KF(T) ,PER( I ) ,AFS(L) .UFHS( I ) ,FFHS( Î ) ,MHS( I ) ,  

1  A^ (  1  > ,  JCKM( T ) ,  JfKF ( IN  
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311 PR(QV!&T(  LOX,  101 1 
WRirF(3,312 ILL  

312 F0PW&T(«0«,40X, 'FND HF G=MEI !ATTDM'TI '+ )  

STPDF JCKM,jr.KF INTO ICKM,irKF AND RECYCL 

3 6 nn 1=1,15 
-37 ICKW(T)=jrKM(T1 
? P  Î C K F (  l ) = j r , K F (  T  )  

•39 JC K W( T ) =0 
40 JC<-(11=0 
41 Rrr,(l) = 0 
42 6FS(  I  1 =0 
43 MHS( T )=  0  
44 MCHS(T)=0 
45 FFHSfI)=0 
46 4S(I)=0 
47 CHNTINUF 

TFTLCKMFLL.FC.CI  TO 1  
43 roMTiMijc 
1 CONTINUE 

STOP 
EM^ 
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C L&BS0N(20 NOV 69)  PROGRAM FOR LAMBDA ZFRO 
C 
C PASED ON T.ALSO FOR COMPUTING STABLE AGE DIST 'M 
C 
C 
c  

DIMENSION TAB(10,R,%1,  LP(5) ,NZ(5) ,NY(51,NN(3 1 ,T(3) ,RZ(?1,RW( 
13)  ,CR (  3) ,DATLAB< 3?)  ,DX(  10Ï  ,XX(  10)  ,CC3 (  

PEAL LAMR0A(?)  
REAL LAMBAA 

704 F0RWAT(10(lX,2F4.n,Fc.3,F4.3,4F6.5, 3X,2'=A.O» 
? F=.3 ,F4.3 ,  4F6.  5 ,3X,2C4.  0 ,  
IF  5 .  3 ,F  A. .  3 ,4FT.  « : / )  )  

705 FERMAT( '0  T ,RZERn ,%(M) ,LA%BDA(ZF%N) ' /3 (5X,4Cp .5 ) / / )  
ON 75 1=1 ,10  
on J =1 , R  

nn 75 K=l,3 
75 TAB(I,J,Kt=0.0 

PE AD 11  » 7777)DATL&S 
7777 FORMAT(?0A4 1 

C INPUT nxioOO column FRHM LIFE TABLE AND EXTEND UNTIL LAST 
C ENTRY IS  UNITY-THEN SUM ! \ND PUT ON TOTAL =1000 BASIS 
C 
C 

DAT& LO/l,?,7, o, P/,M7 /6,?,4,1,1 /,NY/R,P,P ,a,&/ 
C 

on 1000 T aNap=i 
%AD=LPIIANAP) 
IVJYP^NY (  I  ANAP) 
N%M-NZ( IANAP)  
TO 1000 T=1,NYP 
TVD=10CR+T 
IF(NYP.Ea.4)]YP=IYP+^ 
ON 1  000 JI  =  1 ,N7N 
nn  900 K=1T3 

c  
RF AD(  1 ,  7000)  R>X 
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?000 FORMAT ( IQFA.O)  
00 10 L=1 ,1  0  
LL = L  
IF (L .GT.P1Gn TP 5  
IF (nX(  L»  . LT . Î  . 01  30  Tn  6  

4  TAB(L ,1 tK1=DX(L1  
GO TO 10  

6 LL0=^X(L-l)*.41 + .= 
O X ( L ) = L L n  
IF ( n K (L ) .LT .1 .0 ) G n  TO 12  
GO T i  u  

«=.  ML=T&B(L -1 ,1 ,K ) *0 .41+0 .50  
1=(ML.LT . l»  GO TO 12  
T&S(L,T,K1=ML 

10 CONTINUE 
12 NN(K)=LL-1  

C 
c  
c  

T'JM=0 
TS<=NN(K> 
00 20 L  =  1 ,T  SS 

20 TUM=IUW+TaR(l,7,K1 

no ^0 L=% TSS 
?0 TAB(L,?TK)=TFP(L, I  TK) /SVJW*1000.3  

4 ]  TMS=0 
01  40 L=1 ,195 
TMO=TABfL,?,K1 
TABFL,  )=  TWO 

40 1MS=IMS+TMD 
I F ( l ' < . E 9 . 1 0 0 G 1 ^ n  T O  6 0  

1 0 = 1  

00 
Is) 
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T F (  I M S . r , - ^ . - ' 0 0 0 ) T 0  =  - l  
XO^T "S -1 000 
XD=49S(  XO)  
1 DD=xn 
T»:;  lOD.GT .4 mo TO 51 
n o  5 2  L = l t ï n n  

5 ?  T Û B ( L , 2 t K ) = T A B ( L f ? » K ) + 1 0  
no TH ^0 

51 IOL=rDO/? 
10=10*? 
nn 54 L=l , T DL 

5^ T4R(L,?,Kt=T&B(L,?,K)^in 
10= ID /?  
L M ^ I O L + l  
IF{Z*IOL.LT.TDr)TAB(LM,?,K)=TAB(LMT?,K)+in 
nn TO 41 

60 rONS= 1000.0 oo 
DO 73 L=1,ISS ^ 
TÊB(L,^»K)=FRNNS-TAB(L,? ,K1)  
nMS=Tfte( L, ̂.K ) 

7 0 TAB(L,3tK>=rnMC^0.001 
c  

T A B ( 1 , 4 , K 1 = 0 . 6 ?  
nn PI » TSF 

RO TAB( L,4 ,K)  =0.  
r 

on 90 L=1,TSS 
o o  T & B ( L , 5 , K 1  = T @ P ( l , 4 , K ) * T A B ( L , 3 , K )  

r  
01 1 00 L=1 , Tgc 

100 TAP(L,6 ,K)=TAB(L,S,K)TL 
r  
c  

S-=0.0 
s t ^ o . o  
on 120 L=1,TSF 
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(/£!* «ijNuz 

CO 

j J l  tG i *c )a i raK  
] 
3 

(tVcEJlVwdUd ZûA 
t c.01 *e ) 3 j-i iiM 

j 
.  ic i+ .NVla  S i  SAlV iMV »*  X^ I -  »C»)  l i / .oL i  TCiL  

f'aÀl * d <il t L ûi )d J.I uC\ OUa 
J  

l »i*)±tmdU3 00/. 

ûCi  UJL  UL  t  l * i - JT  *au*  l ' i s *  i  )3JV 
â n b l l N Ù J  G û b  

(  t t ) N N '  l  d  I n i N *  I I  ) N N ) O X V b  =  a l l  
a  j 3 3 =  U )  3 3  

3  
3  

> i 3 3 3 = ?  I M ' z . * !  )  e v x =  I X ^ b *  T  ) a V l  O S I  
S S l  *  1 = 1  O É I  O û  

S S / G ' l =  > 3 3 3  
3  

l> i *z . * l )QVx + SS=SS Cv l  
iS i *L= l  Cv l  bu  

0 * L = bb. 
j.= t>i*i*i)QVx oei 

S S l ' 1 = 1  0£T L U  
(a)90dWVl=VVbwVl 

3 
3 

l l>i ) Wb )dX 3 = l») SÙtiWVl 
lX)i/(yS)SUlV=(X)Wd 

yS,= lX)Z% 
SS/9S= IX  ». t  

i  >t*9  *  i ) av  i+9s=9s  oa i  
i%*3*i )avA+^s=GS 
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WP TT C (  3 ,  ̂ 04  )  (  < (TAR (  T -  ,  I  2,  T3 )  „  I  2=1 ,  S) , I  3==!  T 3 )  TL 1=1 T LLP)  
C 

VMT TÇ (  3 ,70^M T(  K)  » RZ(K)  ,P^  (KT ,LAMRDA(K)  »K=1 ,3  )  
WRTTE(?,09R1T&P,7YP,J ,CC 

P9« FORMAT(3T10,10X,3F10.S)  
AR8 FnowAT(10Fo.61 

WRITE (7 » M ( (T AB(K1 ,K K3)Kl= 1, 10) , <2= ?, 8» 6) tK3=l , 3) 
n n  7 a  K K  =  1 . T 0  
n o  7 q  K K K =  '  ,  9  
NO 7Q KKKK=1,3  

79 TAB(  KK ,  ,<KK ,KKK.K)  =0 .  0  
1000 CONTINUE 

STOP 
ewn 

CO 
U1 
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c  L & D < n N  P p n G S A ^  F P R  L T F E  T A B L E S ( T O W &  D E E R )  E N W  ? 
c  (C.N. W E S T  P R O G R A M M E R  1  S U  J U L Y  1 9 6 9 )  E N W  3 
c  C N W  4  

c  D A T A  A R E  H P S  D M  S  E X , A G E  A N D  C G J N T Y  OF K I L L  ( T O  B E  EMW c ;  

r  C O N V E R T E D  T O  Z O N E )  E N W  6 
c  
r  

E N W  7  

ny M E N S !  nM 7 n y ( c o ) , T ( ? ) , T S L T A ( l l , 7 , e , 3 )  TÎ T (  ?  ,P  ̂  , n & T L A B ( 3 ? )  
0 1 M F N S l O M  M M ( f  1  
DATA T S L T A / 1  8 4 R * 0 . 0 /  E N W  o  

T V T E G  , F R  Z O V  
TNTFGFP T H n U  
T H P U ^  1 0 0 0  
S E & 0 (  1  t  1  O O O t O A T L A B  

1 0 0 0  F O R M A T  ( 7 0  & 4  ]  
1302 P E 4 n (  1  , 4 0 0 1  )  I  A N * P ,  N Z  

IF(1ANAD.EQ . 0 )ST"o  
r  Z 0 ^ - ' ( 9 9 )  C O N T A I N S  T H c  C O D E S  F I R  T H E  9 9  C  D  U M  T J  r  S  (  A N A  L  Y  .  P  L A  N E  N W  1 0  
C  T O )  C O N T A I N S  T H E  C U R R E N T  O B S E R V A T I O N  E N W  1 1  
r  T S L T A ( J , < , L , y )  =  T H F  T I M E  S P E C I F I C  L I F E  T A B L E S C l l  X  7 )  E N W  1 2  
c  W I T H  T W F  T H I R D  D I M E N S I O N  G I / I N H  Z O N E , A N D  T H E  F O U R T H ,  S E  X E N W  1 3  
c  E N W  1 4  
c  S F X  C r n F :  V I A L F = 1 ,  F F M A L F  =  ̂ ,  2 0 " % = ?  ENW 1  5  
c  E N W  16 
r  E N W  1  ̂  
r P C A O  M j v p n p  I P  Z 3 N C S (  C A L L E D  M Z ) , Z n N E  C  D D E  (  Z  D N J )  ,  I  Y F  A  R  E N W  2 0  
C E N W  2 1  
r  E N W  2 4  
r  S F T  i J P  A H F  CLASSES i ; N  T S L  T  A  {  J  ,  :  ,  K  ,  M  )  ,  J =  1  ,  1 1 ,  K =  1  ,  N Z  ;  "  =  1  » 3  E N W  2 5  
c  

1 0 4  n n  1  
n o  1  

J -  1 ,  1 1  
K = 1  ,  N 7  

E M W  26 

o n  1  v  =  l , 3  EMW 2 9  

1 T % L T 4 ( J , 1 , K , M 1 = J  F N W  ? 0  
r  c \ ]  W  31 
r  p c a n  O f i T A  C A o n s  1  A T  A  t i m e  u n t i l  A  P L A N K  C A R D  I S  H I T  T O  E N W  3 2  
c  I M O T C A T F  T H F  F \ | n  n p  A  Y ^ A R  T ^ U N T  N U M B E R  H F  M A L E , N O . O F  E N W  3 3  
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?4 
^5 
^6 

?? 
40 
41 

43 

45 
46 

4-3 

51 
52 
a 3 

5^ 
55 
56 
58 
5°  

FFVAL^,ANn NUMBER np ALL.CQMPUTF CHL ? ( 0 E AT HS », ANJ 0 CHECK EM/7 
TOTALS.IT1 = N3.OF FEMALES,IT2 = N3.OF MALE S,IT? = CHMBI NE0 ENW 

ENW 
RFÛOC 1,40011 IYFAP 
IF( TYEAR .EO .OST-^P 
TYY=r YFAP-l POD 
FORMAT(?T 51 
TCUK^O 
on 6 M=:1 ,M7 
NN A V-=- '  ,  3 
TT ( M, M ) = 1 ENW 

FMW 
7Y='^ MEANS EMO OF thjs Y^AR(PLAMK CARD) ENW 

RFAoa ,1001 ur, T 
F3RM4T(i2,%x,TT,^T7 1 EMW 
T F{ ÎYV- TY1-,?,6 
TF(T(?1 .^E.IOO)T 
!•={ Î f .LE. on [ ?1 = ! 
7<=T(1> FNW 
IA=T(?) ENW 

TC(Tr.lF.O) T$=i 
TFn S.GE.il= j 

I F ( I A , L E . n n A = •! 
TF (  T -  1TA=-
TF (  ÎA. GF.] 7)ta=ll 

- - n; t !MT V( r 0-, tr Q ,c i TO K7) CAjw 
TA^A^^F mOF, TS = S FX , 1 np ? 

T'-.niiMtri 
TT ( T-, Tf-njv 1=^T( TC^ ENW 
IT (^ , I cniiMi =î^ , T rouM) +1 ENW 

EMW 

ENW 
Tw Ç PPFWTPIJS STATCYENTS CMISE THE rnpPECT 7n\ip F\;w 
CnOE from THE VECTOR ZON AND UPDATE TOTALS ENW 

TSLT i ( T Û, 9, irnijNi, t s  1 = T SL TA ( T A ,  , Î C DON'. î S ) +1. 0 ENW 
TSL^A (I A ,? ,  imuv,^ ) = TSLTA ( T A, 2 ,  TCOJN, -> )  +1 .0 EMW 



www.manaraa.com

r .  
c  
r  
r  
c  

c  
r  
c  
c  
r  
r, 
c  
c  
r 
r 

q n  T n  1  E N W  6 0  

C O N T I  N U F  E N W  6 1  
E N W  4 2  

W E  N O W  H A V E  ( \ L L  T H E  O ^ S  .  F O R  T M I S  Y E A R r C H E C K  F I 3 S T  2  A D D  E  M W  6 ?  
U P  T O  T H I R D  F O R  E A C H  Z O N E  E N W  6 4  
r . O V D U T P  - H L  3 , 4 , 5 , 6 , 7  E N W  6 8  
T : C ^ L  2 / r O L  ^  T O T A L  = -1 3 3 3  E N W  6 9  

E N W  7 0  

A Î P F G T V  w i t h  1 0 0 0  A M I " )  O E Z R E A S E  B Y  H N F  < T E *  L A G G E D  E L E M E N T E N W  7 1  

Î N  f P L  3 .  F N W  7  9  
E N W  !- '• 

T t r r - L  ^  n i v / . B Y  C O L  4  T I M E S  1 0 0 0  E N W  7 6 .  

E M X  - T  

6 :  ( C O L  4  E M  T R Y  4 -  N E X T  E N T R Y  I N  C O L  4 ) / ? . 0  E N W  7  h  

7 : < j v  r P L . t  J "  r n  A N D  I N C L  E \ ' T 3 Y  A M D  D I V . R Y  : - ' L  4  E M W  7  5  

E N W  7 9  

E N W  9 0  
E N W  8 1  

nn c: M-1 , N 7  E N W  
«in \!= 1 .  3  E N W  P .  3  

00 
00 

q 1 

R 7  
«0 

=>0 

1 OQ 
1 9 2  

1 o 1 

JT =0 
on AQ j=i,11 
TF{TSLT&(Jv?tM,N)181,P,l,R? 
jn=j-.+ i 
-n  T<n  PQ 

.n=o 
r n r o T  TNUP 
N N = 1 1 - J D  
( M-^1 oOt c -> , O--

M 11 =  MM 
r .  ONTT NU-
T F ( . M V )  1 9 0 ,  1 ^ 0 ,  1 < = 1  
W O I T = ( 3 , 1 5 ? T Y E A o , I Y , T Y Y , T T  

NV lF 0',6TS/?4I5) 
STTD 
CHNJT T J C 
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r  
c  

n n  7  J = 1 , N N  E N W  p . '+  

r  F M W  P6 

1  F (  T T (  M ,  M  n 1 7 ^  1  7 ,  1  a  
1  7  W D T T C ( ? , i 7 n ) M , N , t T ( N ,  

1 7 0  F I R M M t  * 1  '  , 4 1 % )  
r,i n 7 

T  P  T S L T & (  J  ,  M , N M  = T S L T  A t  J , ) /  T T ( M , M ) - 1  0 0 0  . 
7  C I N T Î N U -

T S L r 4 ( î , 4 , M , M )  =  - > o o o . n  t =MW 8 7  

o n  «  j = ? ,  
JM1= .J -1  

c  T S L T 4 ( J , 4 , M , u ) = T S L T A ; j / l , 4 , M , N 1 - T S L T 4 ( j y i ,  3 ,  M,  NI )  F N W  B 9  
r  P M W  9 0  

o n  C l  j  =  l , N N  ENW 9 1  

1 F ( T S L T a ( J , 4 , M , %  1 1 1 0 , 1 0 , 2 0  
I P  W P 1 T P ( ? , 1 7 T 1 Y , N , T S L T A (  , N N  

1  V I  F 3 R W & T ( ' 1  T S L  T û  (  J  ,  4 ,  M ,  N )  I  N  ' , 2 1 5 . ^ 1 4 , 6 ,  1"=^ )  

r , n  T I  P  

?n ^ S L T & t  j , 3 , M , N ) = T S L T & ( J , 3 , M , N 1  / T S L T A ( j , 4 , M ,  N ) - 1 0 0  3 . 0  ENW P 2  

o  fOMT I \ " j r  

r  E N W  9 3  r  
1 0  J = 1  ,  N t i  ENW O A  

FMW 9 5  

1  0  T S L T & ( J , 6 , Y , N 1 = ( T S L T A ( J , 4 , M , N ) + T 5 L T A ( J P 1 , 4  , M , N ) ) * 0 . 5  E N W  9 6  

SUVIz :  0 .  0  FNW 9 7  

n n  1 1  j = - ' ,  M M  
1  1  S1JV=  SU ' ^+TSLT  A{  J , ^  ,M , rn  - N W  9 0  

1 2  J  =  1  ,  M  N  =  M W  1 0 0  
V P ( T S L T A U , 4 , M , M  1 1 1 2 1 , 1 2 1 , 1 2 ?  

1 2 1  W ^ T T - ^ t  3 , 1 7 ? )  M , M , T S L T A (  J , ' + ,  , M M  
1 7 ?  F n o % S T ( , i  T . N )  ]  2  ' , ? T 5 , E 1 4 .  6 , r ^ )  

f - n  Tn  12  

1 ? 2  r S L T \ (  J , 7 , M , M >  = q U W / T S L ^ 6 ( J , 4 , M , N )  E N W  1 0 1  

1  2  S (JM=S l jw i -TSLTA(  J , A ,  M , M )  E N W  1  0 3  

c E N W  lO'^ 
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c  3UTDUT NEXT ?Y :OUNTY(ZONE HDED)  ENW 10  2  
[  FNW 105  
r ENW 106 

5  CONTINUE ENW 137  
WRITE(3 ,?005  )TYEAP,  I  ANAP 

2005  F0RYST(*1  THE OUTPUT FOR YEAS ' ,15 , '  USING ANALYSIS  PLAN ' ,13 , '  
1  FOLLOWS'  )  

0 0 15 M=1 ,V7 

WRIT«E(  2 ,  7010  )  IY ' ^A=> , ,  IÛNAP,« ,  (  (  {  TSLTa(  J ,K ,M,N> ,  J=1 ,101  ,K=2  ,71  ,N=1  ,31  
2010  FORMAT(315 /%(6 (10^8 .? / ) ) )  

HRI " r=  (  3 ,2001  Î  M "NW 109  
2031  FORMAT ( ' 0 ' , ?  =  X , 'TAPLF5  F ] i  Z ' INE :10E =  * , I? / /22X, 'WALES ' , ^5X , 'FE^^LEENW 110  

IS '  , ^7x  COf 'PTMFO'  yV  )  EMW 111  
WRITE (  ̂ ,  200?) !?ATL f tB  ENW 112  
WRITC<^ ,200^ ) ( ( (TSLTA(J ,K ,« I ,M» ,K=1 ,7 ) ,N=1 ,3 ) , J=1 ,NJN)  ENW 113  
WPI  TE (3 ,2gn t  )  IT ( i  ,M)  ^  THOU,  IT  i [2  ,THGJ,  IT  (? ,  M)  ,TmU 

? 0 0 6  '  O T l T f t L  '  ,  1  7 ,  I  P ,  ? 2 X , I  5  , I  6 , 3 2 X , I  5 , 1  * = • )  t o  

2003  FORW&^( l l (4X ,F? .0 ,5F6 .0 ,F6 .2v5X,F3 .Q,  5F6 .0 ,F6 .  2 ,5X ,F3 .0 ,5=6 .0 ,F6 .2ENW 114  
1 / ) )  ENW 116  

15  CONTTKJ IJF  
on 50 11=1,11 
n n  R Q  1 2 = 7 , 7  

nn  50  13=1 ,8  
n n  5 3  1 6 = 1  , 3  

•^0  ^SLTA( I1 , I2 , !? , I ^ )=0 . ,0  
C O  T O  ^ 0 ?  

310  STOP 
2002 ^nR%aT(37A41 ENW 116 

ENWR 127  
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2 
3 
ùr 

5 
5  
7  

9  
10 
11 
1 2  
13  
15  
14  
1 6  
1 7 
lA 

19 
2 0  
21 

LAP SON PROqP&M FOR LT^F  TABLES(TOW& DEE3)  
(E .N .kEST I  SU JULY 1969)  

nATA aSE nq  c  HN SEX,AGF AND COUNTY OF K ILL  (TO BE 
CONVERTED rn Z^MEI 

OTMFNSI3N 
DT VENSION 
niWCNSION 
DI4ENSTON 

ZON(9Q1, 
FMT ) 

) 
TARLF(  P ,  1  7 ,  6 ,  •=)  

TSLTA(  11 ,7 ,8 ,3 )  , IT (? ,R)  ,DATLAB(3?)  

&TA TSLTA/1  948*0 .0 /  
ZCN(Go i  CONTAINS 
T(^) CONTAINS 
TSLTA(J ,K ,L ,M)  =  

THF-  CODES FOR THE 99  COJ NT T ES (  ANAL Y 
THr :  CU%3ENT OBSERVATION 
THE t ime  SPECIF IC  L IFE TABLES(11  X 

WITH THF THI30  D IMENSION 1 IV IN9  ZONE,  AND THE FOJRTH,  
SEX C^ rF :  MALE=1,  F f -MALE =  2 ,  30MR=3 

TNTEGtR TOM 
ÎNTEGF» THHi j  
T-HOJ^L 000 
SFAO;1,1000)DATLAR 
FORWAT(?0A6) 

ENW 
ENW 
ENW 
ENW 
ENW 
ENW 
E  

ENW 
.PL  ANENW 

ENW 
7 )  ENW 

S EXENW 
ENW 
ENW 
ENW 
ENW 
ENW 

PFAn NlJMPFR HE ZONES (CALLED NZ) ,ZONE CODE (  ZON ) ,  IY  EAR 
ENW 
ENW 
ENW 

PEûO(^ .  , 3001  )  TANAP, f !Z  
03  ?01  

2 01 J = 
nn 201 «=1,6 
on  ?0T L=3 ,3  
TaBLE(  T , J ,K ,L ) -0  .0  
TNO^o 
FT D M A T ( ?TF) 
!«= ( « M/^p. po.O 1 r-O TP 0 
ni I J=1,11 
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c  S F T  U D  A G F  C L A S S E S  I N  T S L T A ( J ,  

r .  
o n  1 K ^ l,N 7  
o n  1 .  M  =  l  , 3  

1 tslTA(Jt 
o n  6  M = i , M Z  
o r »  , 3  

6 TT ( Mt 0 
n n  3 3 3  K = i  ,  N 7  
m  3  0 0  L = l , 3  
n? 300 T=c,o 
I p Q = I -t-a 

^ 0 0  R E A D C 1  , 3 0 0 0 )  ( T A P L E ( I , J , K , L )  , J  =  T » T P ° )  
3 0 0 0  F G S M A T (  1 O F R  . 0 )  

o n  3 0 3  K = ]  , N 7  
0 ^  3 0 3  L = i , 3  
n n  3 0 3  1 = ? ,  8  
I  V  =  T  - 1  
on 31? J=",TV 
J P = ? * T - J  
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n n  3 0 7  T  3 ^ 1  , N : 7  
m  2 0 7  T  ,  3  

2 0 7  T S L T A (  T P , ? ,  T : = < ,  T < i )  =  T A B L E (  I I ,  T r T i L , I 3 , I ^ )  

n n  " ^ 0 7  î  1  , r . ' 7  
m "=07 T2=1 ,?  
S l J M = 0 .  0  
n n  5 0 «  T 3 =  1  , p  

1 ,  1  ,K=1,NZ;^=1 
P MW ?4 

3 ENW 25 
ENW 26 
E NW 28 
EMW 2 = 
ENW 30 
ENW 37 
ENv.1 38 
ENW 39 

ÏNj 



www.manaraa.com

508  SUM=SU"+TSL"^ /û (  73  t?  T I I  » 12  > 
507  IT (T2 ,T1  

C  COMPUTF rOL  ^ ,4 ,5 ,6 ,7  FMVi 6 8  
c  ?  : rnL  ? / rm ? TOT AL  *  1 0 3 ]  FKJW 6 9  
c  FMlr! 70  
r .  &:PFnTY WITM 1003  AMD DECREASE BY DVE STFo  L&GGFO ELEMENTFM^ 7 1 

c  I N  rni ?  .  Fk jW 7 2  
r FN".-! 7 T 

r s  :  rr^L  ^  PTV.BY COL 4  TTY^S TOGO E MW 7/1 

r ENN 7 c 

i. 6 : ( r ^ l  A ENT3Y +  NEXT F  V T=  Y  I  N C?L  4  1  / ?  .  0 t=rv)>. 76 
C P \'W 77 
r r rL .6  UP T Q  AND INCL CNTPY AND DTV.RY rnL  4  F Ni."" 78 
r  ENW 79 
c  
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7  T S L T 4 ( J , % , M , N ) = I M P P Y  
ISSS=0 
ON 777 J=L,NN 
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WR TTP( ?, ?00S1IY5 , Î AWao 
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00 IS  M=T,N7 ENAJ 108 
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T  Y  =  T  Y F 4 B  
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APPENDIX B. LIFE TABLES 



www.manaraa.com

Table 9. Life tables 

Symbolism; 

X = Age interval 

D' = Deaths within age interval 
X  ^  

= Deaths per 1000 

1 - Survivors at beginning of interval or 
probability of attaining age x 

= Death rate per 1000 

= Average number living within age interval 

= Mean expectation of life 

= Calculated stable age distribution 
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Table 9 (Continued) 

X  D'x Ix Qx ^x %x Cx 

Females 

Analysis Plan #1 - Zone 6 

1959 n ' = 72 

0-1 431 425 1000 . 425 788 1.56 .44350 
1-2 276 272 575 .473 439 1. 34 .27043 
2-3 196 193 303 .637 207 1.10 .15371 
3-4 64 63 110 .573 79 1.15 .06529 
4-5 41 39 47 .830 28 1.01 .03560 
5-6 0 0 8 .000 8 2.50 .01637 
6-7 0 0 8 .000 8 1.50 .00853 
7-8 9 8 8 1.000 4 0.50 .00534 
8-9 .00124 

1960 n ' = 79 

0-1 382 420 1000 .420 790 1.59 .44280 
1-2 228 251 580 .433 455 1.38 .27359 
2-3 192 212 329 .644 223 1.06 .16561 
3-4 65 71 117 .607 82 1.06 .06483 
4-5 25 26 46 .565 33 0.93 .02961 
5-6 19 20 20 1.000 10 0.50 .01658 
6-7 .00565 
7-8 .00133 

1961 n ' = 106 

0-1 446 425 1000 .425 788 1.57 .44460 
1-2 282 269 575 .468 441 1.36 .26564 
2-3 179 170 306 .556 221 1.12 .15006 
3-4 88 83 136 .610 95 0.89 .07611 
4-5 57 53 53 1.000 27 0.50 .03955 
5-6 0 0 0 0 0 0.00 .01576 
6-7 .00581 
7-8 
8-9 

00197 
,00050 
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Table 9 (Continued) 

D' 
X  

D 
X  

Q, 
X  

E 
X  

Analysis Plan #1 - Zone 6 (Continued) 

1962 n' = 118 

0-1 449 450 1000 .450 775 1.40 .43610 
1-2 268 269 550 .489 416 1.14 .29449 
2-3 225 226 281 .804 168 0.76 .18533 
3-4 38 38 55 .691 36 0.81 .04844 
4-5 18 17 17 1.000 9 0.50 .02327 
5-6 .00947 
6-7 .00289 

1963 n' = 133 

0-1 431 428 1000 .428 786 1.42 .43990 
1-2 299 297 572 .519 424 1.10 .28682 
2-3 208 205 275 .745 173 0.75 .16387 
3-4 71 70 70 1.000 35 0.50 .06473 
4-5 .02822 
5-6 .01161 
6-7 .00401 
7-8 .00089 

1964 n' = 103 

0-1 348 457 1000 .457 772 1.26 .44120 
1-2 245 321 543 . 591 383 0.91 .28316 
2-3 170 222 222 1.000 111 0.50 .16148 
3-4 .06898 
4-5 .02907 
5-6 .01155 
6-7 .00389 
7-8 .00069 
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Table 9 (Continued) 

200  

X  D'x °x 1 
X  Ox L 

X  %x Cx 

Analysis Plan #2 - Zone 1 

J.9 62 n' = 142 

0-1 404 423 1000 .423 789 1.50 .44100 
1-2 262 273 577 .473 441 1.24 .28137 
2-3 206 215 304 .707 197 0.91 .16629 
3-4 52 54 89 .607 62 0.89 .06007 
4-5 34 35 35 1.000 18 0.50 .03307 
5-6 .01293 
6-7 .00445 
7-8 .00081 

1963 n' = 170 

0-1 423 411 1000 .411 795 1.50 .44250 
1-2 286 277 589 .470 451 1.20 .27786 
2-3 221 214 312 . 6 86 205 0.81 . 16344 
3-4 102 98 98 1.000 49 0.50 .07134 
4-5 .02874 
5-6 .01098 
6-7 .00409 
7-8 .00105 

1964 n' = 146 

0-1 397 501 1000 .501 750 1.20 .44200 
1-2 234 294 499 .589 352 0.91 .27347 
2-3 163 205 205 1.000 103 0.50 .16247 
3-4 .07193 
4-5 .03119 
5-6 .01322 
6-7 .00488 
7-8 .00090 
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Table 9 (Continued) 

X  D ' x  Ix Ox ^x Bx Cx 

Analysis Plan #2 - Zone 2 

1959 n ' = 174 

0-1 370 413 1000 . 413 794 1.56 .43930 
1-2 237 265 587 . 451 455 1.30 .28674 
2-3 206 230 322 .714 207 0.96 .17489 
3-4 56 63 92 .685 61 1.10 .05496 
4-5 17 19 29 .655 20 1.40 .01880 
5-6 3 2 10 . 200 9 2.10 .00747 
6-7 0 0 8 . 000 8 1.50 .00747 
7-8 8 8 8 1.000 4 0.50 .00831 
8-9 .00205 

1961 n ' = 244 

0-1 431 458 1000 .458 771 1.42 .43660 
1-2 219 233 542 .430 426 1.20 .29383 
2-3 244 258 309 .835 180 0.73 .20730 
3-4 34 36 51 .706 33 0.87 .04095 
4-5 11 11 15 .733 10 0.77 .01452 
5-6 4 4 4 1.000 2 0.50 .00515 
6-7 .00160 

1962 n' = 293 

0-1 444 478 1000 .478 761 1.40 . 44180 
1-2 230 248 522 .475 398 1.23 .26801 
2-3 188 202 274 .737 17 3 0.90 .16546 
3-4 33 35 72 .486 55 1.01 .05896 
4-5 34 37 37 1.000 19 0.50 .04184 
5-6 .01704 
6-7 .00583 
7-8 .00111 

1963 n ' = 276 

0-1 449 443 1000 .443 779 1.38 .43870 

1-2 297 292 557 .524 411 1.08 .28823 
2-3 209 205 265 .774 163 0.73 .16786 
3-4 61 60 60 1.000 30 0. 50 .06152 

4-5 .02731 

5-6 .01131 

6-7 .00399 

7-8 .00114 
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Table 9 (Continued) 

X  D V  
X  

D 
X  X  

Q 
X  X  X  X  

Analysis Plan #2 - Zone 2 (Continued) 

1964 n' = 247 

0-1 456 495 1000 . 495 753 1.21 .44200 
1-2 275 2 9 8  505 .590 356 0.91 .27463 
2-3 19 2 207 207 1.000 104 0.50 .16246 
3-4 .07193 
4-5 .03081 
5-6 .01269 
6-7 .00464 
7-8 .00085 

Analysis Plan #7 - Zone 1 

1959 n' = 38 

0-1 405 523 1000 .523 739 1.60 .45230 
1-2 145 187 477 . 3 9 2  3 8 4  1. 82 .21948 
2-3 91 117 290 .403 2 3 2  1.67 .13630 
3-4 81 104 173 .601 121 1.45 .08456 
4-5 29 37 69 .536 51 1.89 .04077 
5-6 0 0 32 .000 32 2.50 .02550 
6-7 0 0 32 .000 32 1.50 .01934 
7-8 25 32 32 1.000 16 0.50 .01701 
8-9 . 0 0 4 7 9  

1961 n' = 62 

0-1 436 453 1000 .453 774 1.47 .44270 
1-2 216 2 2 4  547 . 410 435 1.28 .26890 
2-3 261 270 3 2 3  . 8 3 6  1 8 8  0.82 .17740 
3-4 27 28 53 . 5 2 8  3 9  1.44 .04248 
4-5 0 0 25 . 000 2 5  1.50 .02942 
5-6 25 25 25 1 . 0 0 0  13 0.50 .02525 
6-7 .00967 
7-8 . 0 0 3 2 5  
8-9 .00088 
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Table 9 (Continued) 

X  D ' x  Dx Qx ^x Bx Cx 

Analysis Plan #7 - Zone 2 

1959 n' — 8 8 

0-1 403 392 1000 .392 804 1.58 .44060 
1-2 309 301 608 . 495 458 1.28 .28639 
2-3 208 202 307 .658 206 1.04 .15655 
3-4 71 69 105 .657 71 1.07 .06094 
4-5 25 24 36 .667 24 1.17 .02674 
5-6 0 0 12 .000 12 1.50 .01477 
6-7 13 12 12 1.000 6 0.50 .01002 
7-8 .00332 
8-9 .00070 

1960 n' = 89 

0-1 371 433 1000 .433 784 1.55 .44220 
1-2 217 253 567 .446 441 1.36 .27439 
2-3 173 201 314 .640 214 1.05 .16671 
3-4 58 67 113 .593 80 1.04 .06653 
4-5 27 3i 46 .674 31 0.83 .03127 
5-6 13 15 15 1.000 8 0.50 .01364 
6-7 .00446 
7-8 .00081 

1961 n ' = 113 

0-1 443 435 1000 .435 783 1.51 .44280 
1-2 265 261 565 .462 435 1.29 .27270 
2-3 207 202 304 .664 203 0.96 .16205 
3-4 66 64 102 .627 70 0.87 .06638 
4-5 39 38 38 1.000 19 0.50 .03497 
5-6 0 0 0 .000 0 0.00 .01436 
6-7 .00535 
7-8 .00143 
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Table 9 (Continued) 

X  D ' x  ° x  I x  Q x  B x  C x  

Analysis Plan #7 - Zone 2 (Continued) 

1962 n" = 116 

0-1 469 483 1000 .483 759 1.41 .44260 
1-2 240 247 517 .478 394 1.26 .26433 
2-3 176 181 270 .670 180 0.96 .16142 
3-4 52 53 89 .596 63 0.90 .06827 
4-5 35 36 36 1.000 18 0.50 .04014 
5-6 .01654 
6-7 .00562 
7-8 .00106 

1963 n ' = 143 

0-1 463 428 1000 .428 786 1.45 .44200 
1-2 313 289 572 .505 428 1.15 .27884 
2-3 208 192 283 .678 187 0. 82 .15950 
3-4 99 91 91 1.000 46 0.50 .07323 
4-5 .03017 
5-6 .01185 
6-7 .00377 
7-8 .00067 

1964 n ' = 119 

0-1 418 505 1000 . 505 748 1.21 .44280 
1-2 234 283 495 .572 354 0.93 .27027 
2-3 176 212 212 1.000 106 0.50 .16424 
3-4 .07244 
4-5 .03170 
5-6 .01318 
6-7 .00455 
7-1 00083 
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Table 9 (Continued) 

X  D' D 1 Q L E c 
X  X  X  X  X  X  X  

Analysis Plan i  17 - Zone 3 

1963 n' = 111 

0-1 455 456 1000 .456 772 1.26 .42420 
1-2 348 348 544 .640 370 0.89 .33844 
2-3 179 178 196 .908 107 0.59 .18250 
3-4 18 18 18 1.000 9 0.50 .03403 
4-5 .01524 
5-6 .00555 

1964 n' = 75 

0-1 355 423 1000 .423 789 1.27 .43810 
1-2 321 383 577 .664 386 0. 84 .29903 
2-3 164 194 194 1.000 97 0.50 .15004 
3-4 .06669 
4—5 .02891 
5-6 .01205 
6-7 .00437 
7-8 .00079 

Analysis Plan #7 - Zone 4 

1961 n ' = 120 

0-1 464 472 1000 .472 764 1. 41 .43950 
1-2 221 225 528 .426 416 1.23 .27863 
2-3 235 239 303 .789 184 0.78 .19222 
3-4 43 44 64 .688 42 0.81 .05280 
4-5 20 20 20 1.000 10 0.50 .02481 
5-6 .00950 
6-7 .00252 

1962 n' = 146 

0-1 436 464 1000 .464 768 1.41 .43930 
1-2 235 251 536 .468 411 1.20 .27945 
2-3 207 219 285 .768 176 0.82 .17792 
3-4 40 42 66 .636 45 0.86 .05469 
4-5 23 24 24 1.000 12 0.50 .03001 

5-6 .01272 

6-7 .00459 

7-8 .00135 
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Table 9 (Continued) 

X  D'x °x 1 
x Qx 2x Cx 

Analysis Plan #7 - Zone 4 (Continued) 

1963 n ' = 150 

0-1 463 430 1000 . 4 3 0  785 1. 45 .44210 
1-2 2 8 8  267 570 . 4 6 8  437 1.17 .27795 
2-3 240 2 2 2  303 .733 192 0 . 7 7  .16861 
3-4 8 8  81 81 1.000 41 0.50 .06707 
4-5 .02831 
5-6 .01145 
6-7 .00384 
7-8 .00068 

1964 n ' = 137 

0-1 423 460 1000 . 4 6 0  770 1 . 2 5  -44100 
1-2 300 325 540 . 6 0 2  3 7 8  0 . 9 0  . 2 8 3 5 9  
2-3 199 215 215 1 . 0 0 0  108 0 . 5 0  .16011 
3-4 .06930 
4-5 .02929 
5-6 .01195 
6-7 .00405 
7-8 ,00072 

Analysis Plan #9 - Zone : 1 

1959 n' = 274 

0-1 385 396 1000 . 3 9 6  8 0 2  1.61 .44010 
1-2 266 274 604 . 454 467 1.34 .28695 
2-3 219 2 2 5  3 3 0  . 6 8 2  218 1.04 .16873 
3-4 64 66 105 . 6 2 9  72 1.20 .05702 
4-5 25 25 39 .641 27 1.37 .02211 
5-6 2 1 14 .071 14 1.93 .00839 

6-7 6 6 13 . 462 10 1.04 .00905 
7-8 7 7 7 1.000 4 0.50 .00601 
8-9 .00162 
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Table 9 (Continued) 

D V  
X 

D  
X 

Q 
X X 

E  
X 

Analysis Plan #9 - Zone 1 (Continued) 

1960 n' = 333 

0-1 386 407 1000 .407 797 1.63 .44190 
1-2 231 244 593 . 411 471 1.41 .27901 
2-3 232 243 349 .696 228 1.05 .17435 
3-4 53 55 106 .519 79 1.31 .05548 
4-5 20 21 51 . 412 41 1.19 .02783 
5-6 24 25 30 .833 18 0.67 .01754 
6-7 5 5 5 1.000 3 0.50 .00322 
7-8 .00069 

1961 n' = 372 

0-1 428 445 1000 .445 778 1.47 .43840 
1-2 234 243 555 .438 434 1.25 .28959 
2-3 225 233 312 .747 196 0.84 .19321 
3-4 52 53 79 .671 53 0.85 .05648 
4-5 24 24 26 .923 14 0.58 .02127 
5-6 2 2 2 1.000 1 0.50 .00106 

1962 n ' = 435 

0-1 435 460 lûOO . 460 770 1. 44 .44180 
1-2 241 254 540 .470 413 1.24 .27181 
2-3 196 206 286 .720 183 0.91 .16590 
3-4 42 44 80 .550 58 0.95 .06032 
4-5 34 36 36 1.000 18 0.50 .03833 
5-6 .01562 
6- 7 .00525 
7-8 .00098 

1963 n ' = 446 

0-1 440 431 1000 .431 785 1.43 .44060 
1-2 293 286 569 .503 426 1.13 .28377 
2-3 214 209 283 .739 179 0.76 .16598 
3-4 76 74 74 1.000 37 0.50 .06601 

4-5 .02791 

5-6 .01111 

6-7 .00380 

7-8 .00083 
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Table 9 (Continued) 

D' D 
X 

Q 
X X X X 

Analysis Plan #9 - Zone 1 (Continued) 

1964 n' = 393 

0-1 432 498 1000 .498 751 1.21 .44210 
1-2 256 294 502 .586 355 0.91 .27386 
2-3 181 208 208 1. 000 104 0.50 .16272 
3-4 .07186 
4-5 .03111 
5-6 .01284 
6-7 .00471 
7-8 .00086 

Maies 

Analysis Plan #9 - Zone 1 

1959 n' = 339 

0-1 385 403 1000 . 403 799 1.61 
1-2 270 284 597 .476 455 1. 35 
2-3 161 168 313 .537 229 1.13 
3-4 99 103 145 . 710 94 0.85 
4-5 32 33 .786 26 0.71 
5-6 9 9 9 1.000 5 0.50 
6-7 0 0 0 .000 0 0.00 
7-8 0 0 0 .000 0 0.00 

1960 n ' = 421 

0-1 462 450 1000 . 450 775 1.53 
1-2 258 251 550 .456 425 1.37 
2-3 175 170 299 .569 214 1.10 
3-4 94 91 129 .705 84 0.89 
4-5 30 28 38 .737 24 0.82 
5-6 9 8 10 . 800 6 0.70 
6-7 2 2 2 1.000 1 0.50 

1961 n' = 421 

0-1 449 453 1000 .453 77 4 1.47 
1-2 278 281 547 .514 407 1.28 
2-3 161 162 266 .609 185 1. 10 
3-4 63 53 10 4 .606 73 1.04 
4-5 26 26 4] .634 28 0.87 
5-6 15 15 15 1.000 8 0.50 
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Table 9 (Continued) 

D' 
X 

D 
X X 

Q 
X X 

E 
X X 

Analysis Plan #9 - Zone 1 (Continued) 

1962 n ' = 452 

0-1 403 430 1000 .430 785 1.51 
1-2 272 290 570 .509 425 1.27 
2-3 152 162 280 .579 199 1.06 
3-4 75 79 118 .669 79 0.83 
4-5 37 39 39 1.000 20 0.50 

1963 n ' = 470 

0-1 413 454 1000 .454 773 1. 40 
1-2 261 287 546 .526 403 1.15 
2-3 149 16 3 259 .629 178 0.87 
3-4 88 96 96 1.000 48 0.50 

1964 n' = 469 

0-1 483 491 1000 . 491 755 1.14 
1-2 373 378 509 .743 320 0.76 
2-3 129 131 131 1.000 66 0.50 
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Table 9 (Continued) 

X D'x Qx ^x %x Cx 

Females 

Analysis Plan #1 - Zone 6 

1959 n' = 51 

0-1 22 431 1000 .431 784 1.54 .44180 
1-2 13 255 569 .448 441 1.33 .27768 
2-3 9 176 314 .562 225 1.00 .17018 
3-4 6 118 137 .857 78 0.64 .08442 
4-5 1 20 20 1.000 10 0.50 .01804 
5-6 0 0 0 .000 0 0.00 .00637 
6-7 .00156 

1961 n' = 92 

0-1 41 446 1000 .446 777 1.61 .44260 
1-2 21 228 554 .412 440 1.50 .26978 
2-3 18 196 326 .600 228 1.20 .17376 
3-4 9 98 130 .750 82 1.25 .07448 
4-5 1 11 33 .333 27 2.50 .01776 
5-6 1 11 22 .500 16 2.50 .01235 
6-7 0 0 11 .000 11 3.50 .00562 
7-8 0 0 11 .000 11 2.50 .00266 
8-9 0 0 11 .000 11 1.50 .00098 
9-10 1 11 11 1.000 5 0.50 .00000 

1962 n' = 78 

0-1 35 449 1000 .449 776 1.41 .43610 
1-2 22 282 551 .512 410 1.15 .29610 
2-3 15 192 259 .714 17 3 0.83 .17882 
3-4 5 64 77 .833 45 0.67 .06458 
4-5 1 13 13 1.000 6 0.50 .01685 
5-6 0 0 0 .000 0 0.00 .00608 
6-7 .00149 
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Table 9 (Continued) 

^ "x «x ^x 

Analysis Plan #1 - Zone 6 (Continued) 

1963 n' = 123 

0-1 53 4 31 1000 . 431 785 1.57 .44280 
1-2 33 268 569 .471 435 1.37 .27187 
2-3 22 179 301 .595 211 1.15 .15559 
3-4 8 65 122 .533 89 1.10 .07008 
4-5 5 41 57 .714 37 0.79 .03761 
5-6 2 16 16 1.000 8 0.50 .01514 
6-7 .00542 
7-8 .00145 

1966 n' = 112 

0-1 49 438 1000 .438 781 1.48 .43980 
1-2 33 295 563 .524 415 1.25 .27876 
2-3 19 170 268 .633 183 1.07 .15113 
3-4 8 71 98 .727 63 1 .05 .06547 
4-5 2 18 27 .667 18 1.50 .02490 
5-6 0 0 9 .000 9 2.50 .01472 
6-7 0 0 9 .000 9 1.50 .01128 
7-8 1 9 9 1.000 4 0.50 .01069 
8-9 .00326 

Analysis Plan #2 - : 3one 1 

1959 n' = 59 

0-1 25 424 1000 .424 788 1.57 .44330 
1-2 16 271 576 .471 441 1. 35 .27190 
2-3 9 153 305 .500 229 1.11 .15551 
3-4 7 119 153 .778 93 0.72 .08629 
4-5 2 34 34 1.000 17 0.50 .02805 
5-6 0 0 0 .000 0 0.00 .01077 
6-7 .00357 
7-8 .00063 
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Table 9 (Continued) 

°'x °x Ix Qx ^x ^x 

Analysis Plan #2 - Zone 1 (Continued) 

1961 n' = 116 

0-1 49 422 1000 .422 789 1.62 .44110 
1-2 26 224 578 .388 466 1. 44 .28057 
2-3 28 241 353 .683 233 1.04 .17962 
3-4 9 78 112 .692 73 1.19 .07172 
4-5 3 26 34 . 750 22 1.75 .02394 
5-6 0 0 9 .000 9 4.50 .00305 
6-7 0 0 9 . 000 9 3.50 .00000 
7-8 0 0 9 .000 9 2.50 .00000 
8-9 0 0 9 . 000 9 1.50 .00000 
9-10 1 9 9 1.000 4 0.50 .00000 

1962 n' = 99 

0-1 40 404 1000 .404 798 1.54 .43930 
1-2 28 283 596 .475 455 1.25 .29167 
2-3 20 202 313 .645 212 0.92 .17164 
3-4 9 91 111 .818 66 0.68 .07060 
4-5 2 20 20 1.000 10 0.50 .01857 
5-6 0 0 0 .000 0 0.00 .00662 
6-7 .00163 

1963 n' = 149 

0-1 63 423 1000 .42 3 789 1.60 . 44330 
1-2 39 262 577 .453 446 1.41 .27088 
2-3 28 188 315 .596 221 1.16 .15744 
3-4 10 67 128 .526 94 1.13 .06893 
4-5 6 40 60 .667 40 0.83 .03658 
5-6 3 20 20 1.000 10 0.50 .01610 
6-7 .00545 
7-8 .00128 
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Table 9 (Continued) 

X  D'x Qx Bx Cx 

Analysis Plan #2 - Zone 1 (Continued) 

0-1 104 397 1000 .397 802 1.59 .44120 
1-2 75 286 603 .475 460 1. 30 .28325 
2-3 54 206 317 .651 214 1.03 .15988 
3-4 20 76 111 .690 73 1.02 .06285 
4-5 6 23 34 .667 23 1.17 .02523 
5-6 0 0 11 . 000 11 1.50 .01390 
6-7 3 11 11 1.000 6 0.50 .00979 
7-8 .00323 
8-9 .00068 

1965 n' = 77 

0-1 33 429 1000 .429 786 1.63 .44430 
1-2 18 234 571 .409 455 1.48 .26553 
2-3 17 221 338 .654 227 1.15 . 16452 
3-4 4 52 117 .444 91 1.39 .06012 
4-5 3 39 65 .600 45 1.10 .03573 
5-6 1 13 26 .500 19 1.00 .01619 
6-7 1 13 13 1.000 6 0.50 .00993 
7-8 .00306 
8-9 .00064 

1966 n' = 147 

0-1 63 429 1000 .429 786 1.58 .44410 
1-2 39 265 571 .464 439 1.39 . 26715 
2- 3 24 163 306 .533 224 1,17 . 15244 
3-4 15 102 143 .714 92 0.93 .07869 
4-5 5 34 41 .833 24 1.00 .03053 
5-6 0 0 7 .000 7 2.50 .01398 
6-7 0 0 7 .000 7 1.50 .00726 
7-8 1 7 7 1.000 3 0.50 .00464 
8-9 .00121 



www.manaraa.com

214 

Table 9 (Continued) 

X  D' X  Qx Bx Cx 

Analysis Plan #2 - Zone 2 

1959 n' = 146 

0-1 54 370 1000 . 370 815 1.68 .43970 
1-2 45 308 630 .489 476 1.38 .29219 
2-3 29 199 322 .617 223 1.22 .15654 
3-4 9 62 123 .500 92 1. 39 .06169 
4-5 6 41 62 .667 41 1.28 .03121 
5-6 1 7 21 . 333 17 1.83 .00926 
6-7 1 7 14 .500 10 1.50 .00611 
7-8 0 0 7 .000 7 1.50 .00258 
8-9 1 7 7 1.000 3 0.50 .00068 

1960 n' = 219 

0-1 88 402 1000 .402 799 1.79 .44500 
1-2 52 237 598 . 397 479 1.66 .26353 
2-3 41 187 361 .519 267 1.42 .15686 
3-4 21 96 174 .553 126 1.42 .07378 
4-5 9 41 78 .529 57 1.56 .03167 
5-6 1 5 37 .125 34 1.75 .01380 
6-7 5 23 32 .714 21 0.93 .01199 
7-8 1 5 9 .500 7 1.00 .00255 
8-9 1 5 5 1.000 2 0.50 .00085 

1961 n' 204 

0-1 88 431 1000 . 431 784 1.66 .44390 
1-2 48 235 569 . 414 451 1.53 .26626 
2-3 42 206 333 . 618 230 1.26 .16400 
3-4 13 64 127 .500 96 1.50 .06444 
4-5 6 29 64 .462 49 1.50 .03246 
5-6 4 20 34 . 571 25 1.36 .01720 
6-7 1 5 15 .333 12 1.50 .00629 
7-8 1 5 10 . 500 7 1.00 .00400 
8-9 1 5 5 1.000 2 0.50 .00141 
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Table 9 (Continued) 

°'x °x Ix «X ^x ^x 

Analysis Plan #2 - Zone 2 (Continued) 

1962 n' = 324 

0-1 144 444 .1 000 .444 778 1.57 .44330 
1-2 71 219 556 .394 446 1.42 .26642 
2-3 78 241 336 .716 216 1.02 .17456 
3-4 18 56 96 .581 68 1. 34 .05431 
4-5 7 22 40 .538 29 1.50 .02542 
5-6 2 6 19 .333 15 1.67 .01374 
6-7 1 3 12 .250 11 1.25 .01061 
7-8 3 9 9 1.000 5 0.50 .00917 
8-9 .00248 

1963 n ' = 287 

0-1 129 449 1000 .449 775 1.51 .44010 
1-2 66 230 551 .418 436 1.33 .27663 
2-3 70 244 321 . 761 199 0.92 . 18403 
3-4 13 45 77 . 591 54 1.27 .04954 
4-5 5 17 31 .556 23 1.39 .02269 
5-6 1 3 14 .250 12 1.50 .01126 
6-7 2 7 10 .667 7 0.83 .00991 
7-8 1 3 3 1. 000 2 0.50 .00454 
8-9 0 0 0 . 000 0 0.00 .00130 

1965 n ' = 91 

0-1 39 429 1000 .429 786 1.58 .44410 
1-2 25 275 571 .481 434 1. 38 .26640 
2-3 19 209 297 .704 192 1.20 . 14683 
3-4 3 33 88 .375 71 1.88 .05013 
4-5 1 11 55 .200 49 1.70 .03554 
5-6 3 33 44 .750 27 1.00 .03153 
6-7 0 0 11 .000 11 1.50 .01498 
7-8 1 11 II 1.000 5 0.50 .00 806 
8-9 .00239 
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Table 9 (Continued) 

X D'x Qx ^x Bx Cx 

Analysis Plan #2 - Zone 2 (Continued) 

1966 n ' = 261 

0-1 104 398 1000 .398 801 1.62 .44110 
1-2 77 295 602 .490 454 1.36 .28220 
2-3 50 192 307 .625 211 1.19 .15295 
3-4 16 61 115 .533 84 1.33 .06119 
4-5 9 34 54 .643 36 1.29 .03059 
5-6 1 4 19 .200 17 1.70 .01206 
6-7 2 8 15 .500 11 1.00 .01091 
7-8 2 8 8 1.000 4 0.50 .00683 
8-9 .00218 

Analysis Plan #7 - Zone 2 

1959 n ' = 62 

0-1 25 403 1000 .403 798 1.58 .44170 
1-2 18 290 597 .486 452 1. 31 .28092 
2-3 10 161 306 .526 226 1.08 .15576 
3-4 7 113 145 .778 89 0 . 72 .08188 
4-5 2 32 32 1.000 16 0.50 .02623 
5-6 U 0 0 .000 0 0 . 00 .00980 
6-7 .00304 
7-8 .00064 

1961 n' = 106 

0-1 47 443 1000 . 443 778 1.63 .44390 
1-2 23 217 557 . 390 448 1. 53 .26565 
2-3 22 208 340 .611 236 1.19 .17396 
3-4 9 85 132 .643 90 1.29 .07181 
4-5 3 28 47 .600 33 1.70 .02641 
5-6 1 9 19 .500 14 ?. .  'sn .01036 
6-7 0 0 9 .000 9 3. 50 .00489 
7-8 0 0 9 .000 9 2.50 .00226 
8-9 0 0 9 .000 9 1.50 .00081 
9-10 1 9 9 1.000 5 0. 50 .00000 
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Table 9 (Continued) 

D'x 1% °x l'x 

Analysis Plan #7 - Zone 2 (Continued) 

1962 n' = 98 

0-1 46 469 1000 .469 765 1.41 .43910 
1-2 26 265 531 .500 398 1.21 .27976 
2-3 17 173 265 .654 179 0.92 .16938 
3-4 7 71 92 .778 56 0.72 .07415 
4-5 2 20 20 1.000 10 0.50 .02561 
5-6 0 0 0 .000 0 0.00 .00946 
6-7 0 0 0 .000 0 0.00 .00250 

1963 n' = 121 

0-1 56 463 1000 .463 769 1.47 .44030 
1-2 29 240 537 .446 417 1.30 .27661 
2-3 25 207 298 .694 194 0.94 .17900 
3-4 7 58 91 .636 62 0.95 .06417 
4-5 3 25 33 .750 21 0.75 .02805 
5-6 1 8 8 1.000 4 0.50 .00965 
6-7 0 0 0 . 000 0 0.00 .00226 

1964 n ' = 182 

0-1 76 418 1000 .418 791 1.47 .43850 
1-2 57 313 582 .538 426 1.17 .29110 
2-3 32 176 269 .653 181 Q.95 .15594 
3-4 12 66 93 .706 60 0.79 .06689 
4-5 5 27 27 1.000 14 0.50 .02992 
5-6 0 0 0 .000 0 0.00 .01206 
6-7 .00454 
7-8 .00103 

1965 n ' = 77 

0-1 34 442 1000 .442 77q 1.6 0 .44460 
1-2 18 234 558 .419 442 1.48 .26248 
2-3 16 208 325 .640 221 1 . 18 .16176 
3-4 4 52 117 .444 91 1.39 .06214 
4-5 3 39 65 .600 45 1.10 ,03734 
5-6 1 13 26 .500 10 O

 
o
 

.01710 
6-7 1 13 13 1.000 6 0.50 .01061 
7-8 .00 330 
8-9 .00070 
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Table 9 (Continued) 

°'x "x Ix «x ^x 

Analysis Plan #7 - Zone 2 (Continued) 

1966 n' = 142 

0-1 62 437 1000 . 437 782 1.54 .44350 
1-2 36 254 563 . 450 437 1.35 .26943 
2-3 25 176 310 .568 222 1.05 .16158 
3-4 14 99 134 .737 85 0.76 .07969 
4-5 5 35 35 1.000 18 0.50 .02990 
5-6 0 0 0 . 000 0 0.00 .01138 
6-7 .00382 
7-8 .00068 

Analysis Plan #7 - Zone 3 

1962 n' = 103 

0-1 44 427 1000 .427 786 1.53 .44060 
1-2 24 233 573 .407 456 1.30 .28087 
2-3 27 262 340 .771 209 0.84 .18565 
3-4 6 58 78 .750 49 1.00 .04957 
4-5 1 10 19 .500 15 1.50 .01653 
5-6 0 0 10 .000 10 1.50 .01171 
6-7 1 10 10 1.000 5 0.50 .01053 
7-8 .00358 
8-9 .00099 

1963 n' = 110 

0-1 50 425 1000 .455 773 1.54 .44390 
1-2 25 227 545 . 417 432 1.40 .26436 
2-3 23 209 318 .657 214 1.04 .16874 
3-4 7 64 109 .583 77 1.08 .06574 
4-5 3 27 45 .600 32 0.90 .03259 
5-6 2 18 18 1.000 9 0.50 .01734 
6-7 .00579 
7-8 .00157 
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Table 9 (Continued) 

Ix «X 

Analysis Plan #7 - Zone 3 (Continued) 

1966 n' = 55 

0-1 23 418 1000 . 418 791 1.65 .44520 
1-2 17 309 5^2 .531 427 1.47 .26243 
2-3 9 164 273 .600 191 1.57 .12846 
3-4 1 18 109 .167 100 2.17 .05758 
4-5 3 55 91 .600 64 1.50 .04990 
5-6 0 G 36 .000 36 2.00 .02659 
6-7 1 18 36 .500 27 1.00 .01736 
7-8 1 18 18 1,000 9 0.50 .00994 
8-9 .00258 

Analysis Plan #7 - Zone 4 

1961 n' = 97 

0-1 45 464 1000 .464 768 1.49 .44190 
1-2 18 186 536 .346 443 1.35 .27094 
2-3 27 278 351 .794 211 0.79 .20277 
3-4 5 5 2 72 . 714 46 0.93 .04933 
4-5 1 10 21 .500 15 1.00 .01802 
5-6 1 10 10 1.000 5 0.50 .01200 

r\ n AO n n '3 Q 0 b- / u u u .uuu U u . V u . V W V 6, 
7-8 G 0 0 . 000 0 0.00 .00112 

1962 n' = 149 

0-1 65 436 1000 .436 782 1.55 .44190 
1-2 33 221 564 .393 453 1.37 . 27357 
2-3 38 255 342 .745 215 0.93 . 18249 
3-4 8 54 87 .615 60 1. 19 .05173 
4-5 3 20 34 .600 23 1. 30 .02293 
5-6 1 7 13 . 500 10 1.50 .01116 
6-7 G 0 7 .000 7 1.50 .00764 
7-8 1 7 7 1.000 3 0.50 .00670 
8-9 .00184 
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Table 9 (Continued) 

X D'x :x Qx 2x Cx 

Analysis Plan #7 - Zone 4 (Continued) 

1954 n' = 208 

0-1 88 423 1000 .423 788 1.50 .43760 
1-2 60 288 577 .500 433 1.24 .29026 
2-3 43 207 288 . 717 185 0.98 .16654 
3-4 9 43 82 .529 60 1.21 .05412 
4-5 6 29 38 .750 24 1.00 .02924 
5-6 1 5 10 .500 7 1.50 .00886 
6-7 0 0 5 . 000 5 1.50 .00612 
7-8 1 5 5 1.000 2 0.50 .00587 
8-9 .00135 

1966 n' = 171 

0-1 67 392 1000 .392 804 1.62 .44100 
1" 2 49 287 608 .471 465 1.34 .28446 
2-3 34 199 322 .63 8 222 1.08 .16070 
3-4 15 88 123 .714 79 1.02 .06744 
4-5 4 2 3 35 .667 23 1.33 .02355 
5-6 0 0 12 .000 12 2.00 .01156 
6-7 1 6 12 .500 9 1.00 .00671 
7-8 1 6 6 1.000 3 0.50 .00387 
8-9 .00066 

Analysis Plan #9 - Zone 1 

1959 n' = 205 

0-1 79 385 1000 .385 807 1 .65 .44010 
1-2 61 298 615 .484 466 1.37 .28892 
2-3 38 185 317 .585 224 1.19 .15849 
3-4 16 78 132 .593 93 1.17 .06919 
4-5 8 39 54 .727 34 1.14 .02894 
5-6 1 5 15 .333 12 1.83 . 006 82 
6-7 1 5 10 .500 7 1. 50 .00465 
7-8 0 0 . 000 5 1.50 .00213 
8-9 1 5 ' ) ] .000 0.50 .00076 
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Table 9 (Continued) 

°'x Qx l'x 

Analysis Plan #9 - Zone 1 (Continued) 

1960 n ' = 30)^ 

0-1 119 3 86 1000 .386 807 1. 7 3 .44280 
1-2 82 26 u 6 :L 4 .434 481 1. 5] .27635 
2-3 G1 19 U 34 V . 570 248 1 . 29 .15887 
3-4 26 84 149 .56 5 107 1 -L • .06857 
4-5 12 39 G'> . 6 U 0 4 5 i . •: 0 .02969 
5-6 1 3 2 u . 125 2 4 1 . / 5 .01123 
6-7 5 16 23 . 714 15 0. 9 8 .00996 
7—8 1 3 6 .500 C-; 1. 0 0 .00203 
8-9 1 3 3 1 .000 • ) 0. 5 0 .00052 

1961 n ' = 320 

0-1 137 428 lOGO . 42 8 786 1. 6 4 .44290 
1-2 7 4 2 31 I- 7 1 . 4 0 1 4 5 6 1. 50 .27143 
2-3 7 0 219 3 4 1 .642 2 :1 1. 18 .17265 
3-4 22 6 9 122 . 5n4 O 'J [ 4 0 .06420 
4-5 9 2 G 5 3 = 529 3 9 ] . 5 6 .02802 
5-6 4 12 2 5 . 500 19 1. 75 .01220 
5-7 1 3 ] 3 . 2 5 (! 11 2 . 00 .00484 
7-8 1 3 9 .333 8 1. 50 .00298 
8-9 1 J 6 . bCU 1.. 00 . 0 0 0 8 0 
9-10 1 3 3 i . 000 2 0. 50 .00000 

1962 n ' - 423 

0-1 184 4 35 1000 .435 7 8 j 1. 56 .44210 
1-2 99 234 565 .414 44 8 1. 3 8 .27250 
2-3 98 232 331 . 700 215 1. 00 .17416 
3-4 27 ') 4 9 9 .643 6 7 1. 17 .05740 
4-5 9 21 3 5 .600 2 5 1. 37 . 023] 7 
5-6 2 5 1 4 .333 12 1. 6 7 .01093 
6-7 1 y 9 , / S (1 ft 1 . 2 5 .00894 
7-8 3 1 7 1 .000 4 0 . 50 .008 1. 3 
8- 9 . 00 2 6(-
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Table 9 (Continued) 

Analysis Plan #9 - Zone 1 (Continued) 

1963 n' = 436 

0-1 192 440 1000 .440 780 1.54 .44120 
1-2 105 241 560 .430 439 1.36 .27567 
2-3 98 225 319 .705 206 1.00 .17529 
3-4 23 53 94 .561 68 1.21 .05730 
4-5 11 25 41 .611 29 1.11 .02824 
5-6 4 9 16 .571 11 1.07 .01232 
6-7 2 5 7 .667 5 0.83 .00602 
7-8 1 2 2 1.000 1 0.50 .00289 
8-9 0 0 0 .000 0 0.00 .00107 

1964 n' = 639 

0-1 276 432 1000 .432 784 1.47 .43600 
1-2 187 293 568 .515 422 1.20 .29427 
2-3 125 196 275 . 710 178 0.95 .16927 
3-4 33 52 80 .647 54 1.05 .05736 
4-5 13 20 28 .722 18 1.06 .02363 
5-6 1 2 8 .200 7 1.50 .00729 
6-7 3 5 6 .750 4 0.75 .00744 
7-8 1 2 2 1.000 1 0.50 .00295 
Q G # V V _L / U 

1965 n' = 168 

0-1 72 429 1000 .429 786 1.60 .44270 
1-2 43 256 571 .448 443 1.43 .27114 
2-3 36 214 315 .679 208 1.18 .16049 
3-4 7 42 101 .412 80 1.62 .05437 
4-5 4 24 60 .400 48 1.40 .03422 
5-6 4 24 36 .667 24 1.00 .02219 
6-7 1 6 12 .500 9 1.00 .00817 
7-8 1 h 6 1.0 00 3 0.50 .00512 
8-9 .00157 
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Table 9 (Continued) 

"'x °x 1% Ox ®x 

Analysis Plan #9 - Zone 1 (Continued) 

1966 n' = 408 

0-1 167 409 1000 .409 795 1.61 .44160 
1-2 116 284 591 .481 449 1.37 .27881 
2-3 74 181 306 .592 216 1.18 .15472 
3-4 31 76 125 .608 87 1.17 .06783 
4-5 14 34 49 .700 32 1.20 .02876 
5-6 1 2 15 .167 13 1.83 .00983 
6-7 2 5 12 .400 10 1.10 .00919 
7-8 3 7 7 1.000 4 0.50 .00701 
8-9 .00225 

Maies 

Analysis Plan #9 - Zone 1 

1959 n' = 286 

0-1 110 385 1000 . 385 808 1.61 
1-2 89 311 615 .506 460 1.30 
2-3 51 178 304 .586 215 1.12 
3-4 25 87 126 . 694 82 1.00 
4-5 7 24 38 .636 26 1.14 
5-6 3 10 14 .750 9 1.25 
6-7 0 0 3 . 000 3 2.50 
7-8 0 0 3 .000 3 1.50 
8-9 1 3 3 1.000 2 0.50 

1960 n' = 392 

0-1 181 462 1000 .462 769 1.49 
1-2 106 270 538 .502 403 1.34 
2-3 54 138 268 .514 199 1.20 
3-4 36 92 130 .706 84 0.98 
4-5 11 28 38 .733 24 0.97 
5-6 3 8 10 .750 6 1.25 
6-7 0 0 3 .000 3 2.50 
7-8 0 0 3 .000 3 1.50 
8-9 1 3 3 1.000 1 0 .50 
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Table 9 (Continued) 

°'x -X Qx ^'x ^x 

Analysis Plan #9 - Zone 1 (Continued) 

1961 n' = 361 

0-1 162 449 1000 .449 776 1,56 
1-2 93 258 551 .467 422 1.42 
2-3 58 161 294 .547 213 1.23 
3-4 30 83 133 .625 91 1,10 
4-5 13 36 50 .722 32 1,11 
5-6 1 3 14 .200 12 1.70 
6-7 2 6 11 .500 8 1.00 
7-8 2 6 6 1.000 3 0.50 
8-9 0 0 0 .000 0 0.00 
9-10 0 0 0 .000 0 0.00 

1962 n" = 424 

0-1 171 403 1000 .403 798 1.63 
1-2 118 278 597 .466 458 1.39 
2-3 74 175 318 .548 231 1.16 
3-4 42 99 144 .689 94 0.96 
4-5 13 31 45 .684 29 0.97 
5-6 4 9 14 .667 9 1.00 
6-7 1 2 5 ,500 4 1.00 
7-8 1 2 2 1.000 1 n - sn 

1963 n ' = 533 

0-1 220 413 1000 .413 794 1.66 
1-2 145 272 587 .463 451 1.48 
2-3 86 161 315 .512 235 1.33 
3-4 50 94 154 .610 107 1.20 
4-5 17 32 60 .531 44 1.28 
5-6 9 17 28 .600 20 1.17 
6-7 3 6 11 .500 8 1.17 
7-8 2 4 6 .667 4 0.83 
8-9 1 2 2 1,000 1 0.50 
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Table 9 (Continued) 

X D ' x  Qx 2x 

Analysis Plan #9 - Zone 1 (Continued) 

1964 n' = 671 

0-1 324 483 1000 .483 759 1.43 
1-2 175 261 517 .504 387 1.31 
2 - 3  102 152 256 .593 180 1.13 
3 - 4  42 63 104 .600 73 1.04 
4 - 5  20 30 42 .714 27 0. 86 
5 - 6  6 9 12 ,750 7 0.75 
6 - 7  2 3 3 1.000 1 0.50 
7 - 8  0 0 0 .000 0 0.00 

1 9 6 5  n ' = 228 

0-1 84 368 1000 . 3 6 8  816 1.54 
1 - 2  85 373 632 .590 445 1.15 
2 - 3  34 149 259 .576 184 1.09 
3 - 4  17 75 110 .680 72 0.90 
4 - 5  6 26 35 .750 22 0.75 
5 - 6  2 9 9 1.000 4 0.50 
6 - 7  0 0 0 . 0 0 0  0 0.00 
7 - 8  0 0 0 .000 0 0.00 

1 9 6 6  n " =  4 6 4  

0-1 199 429 1000 .429 7 8 6  1 . 5 6  
1-2 139 300 571 .525 421 1 . 3 5  
2-3 60 129 272 .476 207 1.29 
3-4 41 88 142 .621 9 8  1.02 
4-5 17 37 54 . 6 8 0  3 6  0 . 8 6  
5 - 6  7 15 17 .875 10 0.62 
6-7 1  2 2 i . o o n  1 0.50 
7-8 0 0 0 . 000 0 0.00 



www.manaraa.com

226 

APPENDIX C. COMPUTER MATRIX FOR 

INPUT OF COUNTY OF KILL 
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01 
0 2  
03 
04 
05 
06 

07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2 0  
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
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Computer matrix for input of county of kill data 
to analysis plans 

Management plans 
12 7 9 

1967 1966 Mustard's Statewide 
zoning zoning regions except 

res. data 

2 2 
2 2 
5 2 
3 2 
1 2 
4 1 
4 1 
2 1 
6 1 
4 2 
6 1 
6 1 
6 1 
2 1 
1 2 
4 2 
6 1 
6 1 
6 2 
2 2 
6 1 
5 2 
4 2 
1 2 
2 1 
3 2 
2 2 
4 2 
3 2 
6 1 
4 2 
6 1 
5 2 
6 1 
6 1 
1 2 
2 1 
4 1 
2 2 
6 1 
6 1 
4 1 

4 1 
3 1 
1 1 
4 1 
3 1 
2 1 
2 1 
2 1 
2 1 
2 1 
2 1 
2 1 
2 1 

2 1 
3 1 
4 1 
2 1 
2 1 
2 1 
4 1 
2 1 
1 1 
4 1 
3 1 
2 1 
4 1 
4 1 
2 1 
4 2 
2 1 
1 1 
2 1 
1 1 
2 1 
2 1 
3 1 
2 1 
2 1 
4 1 
2 1 
2 1 
2 1 
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Table 10 (Continued) 

Management plans 
1 2 7 9 

County 1967 1966 Mustard's Statewide 
number zoning zoning regions except 

res. data 

43 1 2 3 1 
44 3 2 4 1 
45 6 2 2 1 
46 6 1 2 1 
47 1 1 2 1 
48 4 1 4 1 
49 4 2 4 1 
50 4 1 4 1 
51 3 2 4 1 
52 4 1 4 1 
53 4 2 4 1 
54 3 2 4 1 
55 6 1 2 1 
56 3 2 4 1 
57 4 2 2 1 
58 3 2 4 1 
59 3 2 4 1 
60 6 1 3 1 
61 2 2 4 1 
62 3 2 4 1 
63 3 2 4 1 
64 4  ]. 4 1 
65 1 2 3 1 
66 6  1 2 1 
67 1 2 3 1 
68 3 2 4 1 
69 1 2 3 1 
70 4 2 4 1 
71 6 1 2 1 
1 2  6 1 2 1 
73 1 2 3 1 
74 6 1 2 1 
75 6 1 3 1 
76 5 1 2 1 
77 4 1 2 1 
78 1 2 3 1 
79 4 1 4 1 
80 2 2 4 1 
81 6 1 2 1 
82 4 2 4 1 
83 1 2 3 1 
84  6  1 3 1 
85  4 1 2 1 
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86  
87 
8 8  
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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(Continued) 

Management plans 
12 7 

1967 1966 Mustard's 
zoning zoning regions 

4 14 
2 2 3 
2 2 4 
3 2 4 
3 2 4 
3 2 4 
4 2 4 
3 2 4 
6 12 
6 1 2 
5 2 1 
12 3 
6 12 
6 12 
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APPENDIX D. SAMPLE CALCULATION OF c(t,x), 

THE STABLE AGE-DISTRIBUTION 
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c(t,x) = proportion of individuals in age group x 

where w = upper limit of reproductive life for species. 

Composite data for 19 59-1966, n = 2853 females 

Age X-x c(t,x) 

0 1.000 1.000 . 4257 
1 .570 1.1919 . 6794 .2892 
2 .301 1.4206 . 4276 .1820 
3 .091 1.6932 .1541 .0656 
4 .026 2.0181 .0525 .0223 
5 .010 2.4054 . 0241 .0103 
6 .004 2.8669 .0114 . 0049 

2.3491 1.0000 
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APPENDIX E. SAMPLE CALCULATION OF LAMBDA 
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Sample Calculation of Lambda for Composite Distribution 
o£ Females 1959-1966, n' = 2853, Classes 

Extended to Account for 10 Age Classes 

n 2 9 0 3  

Age D' D 1 m̂ . 1 m Age 
X  X  X  X  X  X  

0 1.0000 
1 1226 4 2 2 . 3  .5777 .630 .36395 
2 767 264.2 . 3125 .957 .30002 
3 600 206.7 .1068 .957 .10221 
4 185 63.7 . 0 4 3 1  .957 .04125 
5 75 25. 8 .0173 .957 .01656 
6 30* 10. 3 .0070 . 9 5 7  .00670 
7 12* 4.1 . 0 0 2 9  .957 .00278 
8 5* 1.7 . 0 0 1 2  .957 .00115 
9 2* .7 . 0 0 0 5  . 9 5 7  .00048 

10 1 

.36395 

.60004 

.30663 

.16500 
. 0 8 2 8 0  
.04080 
.01946 
.00920 
.00432 

2903 999 .5 83510 1.59220 

T = mean length of a generation 

^ ̂ = 1.90659 
h i m  .  X  X  

tT  
R = Z1 m = .83510 = e 
O XX 

^9^0 _ Ig 8.351 - Ig 10 _ 2,12238 - 2.30259 
^ T 1.90659 1 . 9 0 6 5 9  

A = antilog r = .910 

Estimated at .4 preceding class. 
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